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Abstract 

2',3'-Dideoxynucleoside analogs are commonly used as anti-HIV, anti-HBV, 

and anti-cancer drugs. Despite of their potent activities, there are some major limitations 

in using 2',3'-dideoxynucleosides as therapeutic agents. The nucleosides have usually 

poor cellular uptake because of their hydrophilic nature. Some of the nucleoside 
\ 

analogs, such as anti-HIV agents, become ineffective after multiple administrations 

because of the development of the drug resistance, and therefore they must be 

administered in combination therapy. It is hard to deliver the nucleoside analogs to a 

particular tissue for site specific targeting. Furthermore, nucleoside analogs undergo 

three intracellular phosphorylation steps to become active. The first phosphorylation 

step is slow and a rate-limiting process for several compounds. 

Herein, we report the synthesis and evaluation of 2',3'-dideoxynucleoside 

conjugates with fatty acids, peptides, other nucleosides, fatty acyl phosphotriesters, or 

polymer derivatives. The primary hypothesis of this project was that conjugation of 

nucleosides with other compounds offers a novel strategy in designing compounds with 

enhanced anti-HIV activity. This combination may result in development of anti-HIV 

agents having enhanced lipophilicity, longer duration of action by sustained 

intracellular release of active substrates at adequate concentrations, higher uptake into 

infected cells, and/or site specificity. The development of viral resistance to the 

nucleosides would occur at a slower rate than to either compound alone. Furthermore, 

some of the compounds may be used to bypass first rate-limiting phosphorylation step. 
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In the first two chapters, synthesis and anti-HIV activities of fatty acyl 

derivatives of Zidovudine (AZT), Allovudine (FLT), Emtricitabine (FTC), Lamivudine 

(3TC), and Stavudine (d4T) are discussed. Among all the compounds, 5'-0-myristoyl 

derivative of FTC (2.31, ECso = 70 nM against cell-free virus) exhibited the best anti-

HIV profile when compared with other fatty acyl derivatives of other nucleosides and 

the physical mixture of FTC and myristic acid. 5'-0-Fatty acyl derivatives of FLT, 5'-
~ 

0-(12-azidododecanoyl) derivative of FLT (KP-1), and 5'-0-(12-

thioethyldodecanoyl)thymidine (KP-17), also displayed good activity against cell-free 

(EC50 values of <0.2 to 0.4 µM, respectively) and cell-associated (EC50 values of 0.9 to 

1.0 µM , respectively) virus and minimal cellular toxicity. Cellular uptake studies for 5'-

0-fatty acyl derivatives of FLT and 3TC were conducted on CCRF-CEM cell line using 

a 5(6)-carboxyfluorescein derivative attached through 12-aminododecanoic acid as a 

linker to the nucleosides. The fluorescence-based studies indicated that the fatty acyl 

derivatives of FLT and 3TC have a higher cellular uptake versus that of the 

corresponding parent nucleoside substituted with a short alkyl group, such as ~-alanine. 

The cellular uptake was concentration- and time-dependent. 

In the third chapter, the synthesis and anti-HIV activities of succinate, suberate, 

and peptide derivatives of AZT, FLT, and 3TC are discussed. The compounds were 

designed in such a way to have 1 to 3 nucleosides. The hypothesis underlying this 

project is that the conjugates are able to deliver 1 to 3 nucleoside analogs to the HIV-

infected cells. Some of the nucleoside-peptide conjugates were also substituted with the 

fatty acids. Peptides conjugated with fatty acids and nucleosides exhibited higher anti-
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HIV activities when compared with those substituted only with nucleosides. Increasing 

the number of anti-HIV nucleosides to 2 or 3 on the peptide chain enhanced the anti­

HIV potency. A glutamic acid ester derivative, FLT-Succinate-AZT(glutamyl)-3TC, 

containing three different nucleosides was the most active compound among all the 

derivatives with an ECso value of 0.9 µM. 

Chapter 4 describes the synthesis of FLT from thymidine using a solid-phase 

method to circumvent some of the problems associated with the solution-phase 

methods, such as multiple protecting and deprotecting steps. 

Fifth chapter discusses the synthesis and anti-HIV activities of phosphotriesters 

of AZT and FLT. The conjugates were expected to get hydrolyzed inside the cell, to 

release nucleoside monophosphates, and to bypass first rate limiting phosphorylation 

step. The synthesized phosphotriester derivatives showed only modest anti-HIV 

activity, significantly lower than that of their parent nucleosides 

In chapter 6, synthesis and characterization of dextran prodrug (3TCSD) of the 

antiviral drug 3TC is discussed. Dextran-3TC conjugate was synthesized to localize 

3TC selectively in the liver and provide sustained release of the drug by the action of 

liver lysosomes. Liver accumulation of conjugated 3TC was enhanced by 50 fold when 

compared to that of parent drug. 
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In chapter 7 the synthesis and biological evaluation of double-barreled 

conjugates of sodium cellulose sulfate (CS) with 2',3'-dideoxynucleosides analogs 

(AZT, FLT and 3TC) using different linkers are described. Cellulose sulfate is a 

polyanionic polymer which blocks HIV entry into the cells by interacting with the 

positive charge of viral gp 120 protein. Nucleosides analogs act as reverse transcriptase 

inhibitors (RTis). Conjugates were expected to undergo enzymatic hydrolysis and 
\ 

thereby releasing nucleosides and cellulose sulfate targeting two different strains of 

virus. Cellulose sulfate conjugates of nucleosides containing an acetate linker showed 

good activity against both R5 and X4 strains of HIV. For example a CS-AZT conjugate 

(acetate linker; 1.73% loading) was more effective than CS, especially against the RS 

HIV-I lab-adapted strain BaL. Similarly, sodium cellulose sulfate-acetate-FLT and 

showed better anti-HIV profile than sodium cellulose sulfate and the mixture of sodium 

cellulose sulfate and FLT. 

Overall, the research described in this dissertation demonstrated that conjugation 

of anti-HIV nucleoside analogs with appropriate compounds (e.g., fatty acids, polymers, 

peptides groups, or other nucleosides) is an alternative strategy for designing more 

effective anti-HIV agents that can be further developed as therapeutic or preventative 

agents. 
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Preface 

This thesis is written in the manuscript format. This work is dedicated to my 

beloved parents whose constant support and unmatched love guided me throughout the 

period of this study. 

Chapter 1 and Chapter 2 discuss the synthesis and biological evaluations of fatty 
' 

acyl derivatives of various ddNs including FLT, AZT, 3TC, FTC, and d4T. Nucleosides 

and myristic acid analogs act as RT inhibitors (RTis) and viral NMT inhibitors, 

respectively. It was expected that the conjugation of compounds to enhance the 

lipophilicity and thus the cellular uptake and to reduce the toxicity associated with 

nucleosides. Furthermore, development of viral resistance to two active drugs would 

occur at a slower rate than to either compound alone. 

In Chapter 3, various peptide, succinate and suberate derivatives of nucleosides 

were synthesized and evaluated for anti-HIV activities . Derivatives were synthesized in 

such a way to allow the incorporation of several anti-HIV nucleosides in one compound 

for combinational therapy. Peptide derivatives were myristoylated at N-terminal to 

improve the cellular uptake. The derivatives were expected to release different 

nucleosides intracellularly, to provide synergic effect, and to reduce the viral drug 

resistance. 

Chapter 4 deals with reported solution-phase methods for the synthesis of 3'-

fluoro-3 '-deoxythymidine (FLT) are cumbersome, require purification of intermediates, 

Vlll 
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and include several protecting/deprotecting steps. To circumvent these problems, a solid-

phase strategy was designed for the synthesis of FLT. 

In Chapter 5 nucleosides are converted into their monophosphate, diphosphate 

and finally to triphosphate by enzymatic phosphorylation. Conversion to nucleoside 

monophosphate is the rate-limiting step. Several phosphate triester derivatives of FLT 
\ 

and AZT with myristic acid analogues were synthesized using glycol as a linker in order 

to improve their cellular uptake and bypass rate-limiting monophosphorylation. 

In Chapter 6, 3TC is used to treat hepatitis B viral infection. Treatment of HBV 

infection is significantly dependent on its distribution and accumulation in the liver. 

Therefore, 3TC was conjugated with dextran (25 kD) by using succinate linker to 

synthesize 3TC-succinate-dextran conjugates. Since dextran (25 kD) has the capacity to 

accumulate in the liver, the conjugate was expected to get hydrolyzed inside the liver 

releasing free 3TC. Using this approach allowed a higher amount of 3TC to target the 

liver. 

Capter 7 deals with cellulose sulfate that belongs to the category of sulfonate and 

sulfate polyanionic microbicides which inhibitors HIV entry and sperm-function. 

Bifunctional conjugates containing AZT or FLT as RTis and cellulose sulfate as HIV 

entry blockers were synthesized. The conjugates were expected to provide additional 

bisubstrate compounds having synergistic and broad-spectrum activity against susceptible 

and AZT-resistant strains and sperm and STD-pathogen inhibiting properties. 

lX 
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Introduction 

1. Human Immunodeficiency Virus (HIV) 

Human immunodeficiency virus (HIV) is a reterovirus, which mainly targets 

the immune cells, such as T-lymphocytes, monocytes, B lymphocytes, and 

macrophages that have CD4, a member of the immunoglobulin superfamily (Costin, 

2007). The infection induces progressive loss of immune system, which ultimately 

results in the opportunistic infections and malignancies associated with acquired 

immunodeficiency syndrome (AIDS). According to the UNAIDS reports almost 33.2 

million people were living with HIV at the end of 2007, a year in which 2.5 million 

people were newly infected with HIV infection and 2.1 million died of AIDS. Current 

antiretroviral drugs do not eliminate HIV and restore the immune system completely. 

However, all combination therapy can reduce the viral replication to the minimum 

level to prevent the advance of the infection. Another problem is the continued 

development of drug-resistant virus to current antiretroviral drugs. Thus, there is an 

urgent need to discover new, safe, and potent anti-HIV agents and preventive 

strategies as existing therapies succumb to newly developed resistant virus. 

HIV shares features common to all retroviruses and is able to route genetic 

information from RNA to DNA. This is accomplished by a unique enzyme, Reverse 

transcriptase (RT), which is encoded by a gene within the retroviral genome. HIV 

contains three different types of structural proteins named the external glycoprotein 

(Env), the capsid protein (Gag), and the viral enzymes necessary for replication (Pol) 
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proteins. Env proteins (gp 120 and gp41) are responsible for viral binding with the 

host cell membrane and for the infectivity of the viral particle by means of attachment 

to specific cellular receptors. Gag proteins are responsible for forming the reteroviral 

core (capsid). Pol proteins include pr integrases, RT, and protease which are 

responsible for viral replication (Cohen et al., 2008). 

gp120 

CD4 - --=1:i]coreceptor 

~st~ 
A 

F 

CD4 ~ 
~=~~IL'coreceptor 

P'" 
-' Host ce II 

B 

E D 

Fig l:(A) HIV and host cell; (B) Binding of gpl20 at CD4 inducing changes in 
gpl20; (C) Attachment of gp120 with coreceptor; (D) Dissociation of gp41 from 
gp 120; (E) Confirmation changes in gp4 l leading to hairpin formation bringing the 
two membranes closer; (F) fusion of viral envelope and release of viral content in 
cell 

HIV life cycle starts with the attachment of HIV gp120 Env proteins to the 

host cell membrane receptors. First, HIV Env gpl20 glycoprotein binds to CD4 

receptor of the host cell (Dimitrov et al., 2005 and Weissenhom et al., 1997). This 

binding induces conformational changes in gp 120 molecule and exposes its other 

binding sites becoming suitable for attachment with coreceptors. Coreceptor binding 
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leads to another conformational change in the viral envelope leading to gp 120 

dissociation from gp41. Exposure of hydrophobic gp41 domains results in gp41-cell 

membrane interaction. Finally, HRl and HR2 regions of gp41 form a six-helix hairpin 

like structure bringing the two membranes closer to each other initiating fusion 

process and release of viral contents in the host cell (Fig. 1 ). 

,,..._,.,,_ '- Viral Protease 

/ ,,..._,.,,_ ~ 
Viral RNA ----

\ /Reverse Transcriptase 

~~~ Proviral D A 

Viral 
components ~ 

'-·<..,_~ .. 00 

Tran lation o... ~! ~odification 
~ no:;: ~~~~ MT 

._.u-::.,..;:. ~/ Viral Proteins 

Pol yprotei n 

Fig. 2. HIV Life cycle 

Once inside the host cell, the single stranded RNA gets converted into the 

double stranded DNA by the action of RT (Fig. 2). Proviral DNA is then incorporated 

into the host cell DNA by the action of integrase enzyme. Proviral DNA produces 

viral RNA, which after translation forms polyproteins. Polyproteins undergo post-

translation by the action of protease enzyme to form functional proteins. These 

proteins are further myristoylated at N-terminal glycine residue in the presence of N-

myristoyl transferase (NMT) enzyme to make them lipophilic. Lipophilic proteins 
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along with the genetic material move towards the cell membrane resulting in the 

formations of virus particles (Farazi et al., 2001; Wu et al., 2004). 

2. RS and X4 Strains of HIV-1 

Positively charged V3 loop of the viral protein gp 120 interacts with the 

negatively charged CD4 receptor, CCR5, and CXCR4 coreceptors (Kajumo et al., 

2000, Cheng-Mayer et al., 1997). Transmembrane chemokine receptors belong to two 

different classes of receptors C-X-C (a-receptor) and C-C W-receptor) (Deng et al., 

1996). The classification is on the basis of separation of first two cysteines by single 

amino acid in C-X-C class and adjacent in C-C class. 

Depending on the type of coreceptors used for viral binding to the cell 

membrane, HIV can be classified in two categories; R5 and X4 strains of virus. These 

two strains show completely different interactions with the host cells and produce 

different pathogenic effects (Pollaskis et al., 2004, Fais et al., 1999). R5 strain of virus 

interacts with CCR5 chemokine coreceptors for cell-binding (monocytotropic strain, 

M-tropic) (Cheng-Mayer et al., 1997, Knox et al., 2004, Alkhatib et al., 1996). X4 

strains of virus uses CXCR4 coreceptors to enter in the cells (lymphocytotropic strain, 

T-tropic) (Yi et al., 1999, Kajumo et al., 2000). X4-strains of HIV contain higher 

strength of positive charges at V3 loop than R5 virus (Shattock et al., 2002, Meylan et 

al., 1994). Therefore, X4 virus interacts much better with the cell-membrane than R5, 

but at the same time are more vulnerable to polyanionic entry blockers. 
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3. 2',3'-Dideoxynucleoside Analogs as Reverse Transcriptase Inhibitors 

2',3'-Dideoxynucleoside (ddN) analogs are used as the commercial drugs for 

the treatment of HIV infection, AIDS, hepatitis B virus (HBV), and cancer. Several 

ddNs, such as 2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC), 2',3'-didehydro-2',3'-

dideoxythymidine ( stavudine, d4T), 2',3'-dideoxy-5-fluoro-3'-thiacytidine 

(emtricitabine, FTC), 2',3'-dideoxycytidine (zalcitabine, ddC), 3'-azido-3' 

deoxythymidine (zidovudine, AZT), (R)-9-(2-phosphonomethoxypropyl)adenine 

(tenofovir, TFV), and 5-fluoro-2'-deoxyuridine (Floxuridine, 5FU) are commercially 

used as in combination therapy with other drugs. 

In order to produce their pharmacological effects, on entering the cells the 

majority of ddNs are phosphorylated intracellularly to monophosphates, diphosphates, 

and triphosphates in the presence of host cellular kinases. RT is a key enzyme in the 

replicative cycle of HIV and HBV. In case of anti-retroviral therapy, ddNs are called 

RT inhibitors. For example, anti-HIV ddNs are prodrugs that must enter the infected 

cell and then be phosphorylated to the active triphosphates by host cell kinases. As 

triphosphates, the ddNs act through inhibition of RT by means of substrate 

competition with natural deoxynucleosides and through chain termination of the 

nascent DNA being transcribed by the viral RT by means of incorporation of the ddN 

triphosphates that lacks the 3'-hydroxyl group (Lee et al., 2001, Nikolenko et al., 

2005). Fig. 3 shows the activation of AZT as a representative example. 
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Fig. 3: Mechanism of anti-HIV activity of AZT. 

The major problems with ddNs are their high level of clinical toxicities such as 

bone marrow suppression and neuropathy For example, AZT triphosphate also inhibits 

mitochondrial DNA polymerase (Lewis et al., 2006, Lund et al., 2007). Thus, 

treatment with ddNs faces several challenges, such as a low therapeutic index caused 

in part by inhibition of cellular polymerases, absolute dependence on host cell kinase-

mediated activation (Fig. 1), limited brain uptake, short half-life in blood, low 

potential for metabolic activation, and the rapid development of resistance to drugs by 

HIV-I. Some important limitations are discussed briefly. 

The hydrophilic nature of ddNs leads to limited cellular uptake and 

bioavailability. Extensive efforts have been carried out to synthesize lipophilic 

prodrugs of anti-HIV nucleosides (Parang et al., 1998, 1997). The lipophilic prodrugs 
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must have acceptable stability prior to cellular uptake and selective biotransformation 

to the active species. 

The individuals being treated with the ddNs stops responding to the treatment 

due to drug resistance. The continual use of ddNs often results in emergence of drug­

resistant virus. For example, single point mutation at Met 184 with Val and Ile results 

in 3TC and FTC resistant HIV strains (Mulder et al., 2008, Sarafianos et al., 1999, 

Diallo et al., 2003). HIV also produces resistance against d4T by K65R mutation 

(Garcia-Lerma et al., 2007). Similarly, mutation at Met 552 with Val and Ile results in 

3TC and FTC resistant HBV strains (Das et al., 2001). Viruses with resistance 

mutations accumulate, sometimes with complete replacement of wild-type virus by 

drug resistant mutants. 

Combination therapy for controlling HIV-1 infections involving different 

classes of anti-HIV drugs provides several potential advantages to reduce the drug 

resistance (Zdanowicz, 2006). Two or more drugs may have additive or synergistic 

interactions that produce better efficacy than either drug alone. In highly active anti­

reteroviral therapy (HAAR T) HIV is targeted by different classes of reverse 

transcriptase inhibitors along with protease inhibitors. 

Furthermore, the first phosphorylation step of conversion of several ddNs to 

their monophosphates is a slow and rate-limiting process (Van et al., 1990). In 

attempts to bypass the first rate-limiting phosphorylation step in the metabolic 

conversion of nucleoside analogs, numerous prodrugs of 5'-monophosphate types, 

such as neutral species of phosphotriester derivatives of nucleosides have been 
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proposed (Parang et al., 2000) which are readily taken by the infected cells. After the 

action of hydrolytic enzymes, phosphotriesters results are converted to active 

nucleoside monophosphate intracellularly. 

4. Objectives of research 

Various ddN conjugates with fatty acids, peptides, other nucleosides, and 

polymer derivatives were synthesized with an intention to develop multifunctional 

anti-HIV-1 agents. The hypothesis underlying this project was that safe, potent, and 

broad-spectrum multifunctional anti-HIV agents can be designed to deliver and release 

different active species intracellularly at the same time. Furthermore, development of 

viral resistance to several active drugs would occur at a much slower rate than to either 

compound alone. Subtype and mutant coverage will also be enhanced. Specific 

objectives for each class of compounds are discussed here briefly. 

Chapter 1 and Chapter 2 

First two chapters discuss the synthesis and biological evaluations of fatty acyl 

derivatives of various ddNs including 3'-fluoro-3'-deoxythymidine (FLT), AZT, 3TC, 

FTC, and d4T. Nucleosides and myristic acid analogs act as RT inhibitors (RTis) and 

viral NMT inhibitors, respectively. It was expected that the conjugation of compounds 

to enhance the lipophilicity and thus the cellular uptake and to reduce the toxicity 

associated with nucleosides. Furthermore, development of viral resistance to two 

active drugs would occur at a slower rate than to either compound alone. 
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Chapter 3 

Various peptide, succinate and suberate derivatives of nucleosides were 

synthesized and evaluated for anti-HIV activities. Derivatives were synthesized in 

such a way to allow the incorporation of several anti-HIV nucleosides in one 

compound for combinational therapy. Peptide derivatives were myristoylated at N­

terminal to improve the cellular uptake. The derivatives were expected to release 

different nucleosides intracellularly, to provide synergic effect, and to reduce the viral 

drug resistance. 

Chapter 4 

Reported solution-phase methods for the synthesis of FLT are cumbersome, 

require purification of intermediates, and include several protecting/deprotecting steps. 

To circumvent these problems, a solid-phase strategy was designed for the synthesis of 

FLT (Agarwal et al., 2007) 

Chapter 5 

Nucleosides are converted into their monophosphate, diphosphate and finally 

to triphosphate by enzymatic phosphorylation. Conversion to nucleoside 

monophosphate is the rate-limiting step. Several phosphate triester derivatives of FLT 

and AZT with myristic acid analogues were synthesized using glycol as a linker in 

order to improve their cellular uptake and bypass rate-limiting monophosphorylation 

(Agarwal et al., 2008). 
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Chapter 6 

3TC is used to treat hepatitis B viral infection. Treatment of HBV infection is 

significantly dependent on its distribution and accumulation in the liver. Therefore, 

3TC was conjugated with dextran (25 kD) by using succinate linker to synthesize 

3TC-succinate-dextran conjugates (Chimalakonda et al., 2007). Since dextran (25 kD) 

has the capacity to accumulate in the liver, the conjugate was expected to get 

hydrolyzed inside the liver releasing free 3TC. Using this approach allowed a higher 

amount of 3TC to target the liver. 

Chapter 7 

Cellulose sulfate belongs to the category of sulfonate and sulfate polyanionic 

microbicides which inhibitors HIV entry (Ketas et al., 2003; Chan and Kim, 1998) and 

sperm-function (Anderson et al., 2000). Bifunctional conjugates containing AZT or 

FLT as RTis and cellulose sulfate as HIV entry blockers were synthesized. The 

conjugates were expected to provide additional bisubstrate compounds having 

synergistic and broad-spectrum activity against susceptible and AZT-resistant strains 

and sperm and STD-pathogen inhibiting properties. 
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1.1. Abstract 

A number of 5'-0-fatty acyl derivatives of 3'-fluoro-2',3'-dideoxythymidine 

(FLT) were synthesized and their anti-HIV activities were evaluated and compared 

with the corresponding 5'-0-fatty acyl derivatives of 3'-azido-2',3'-dideoxythymidine 

(AZT). Various assays such as anti-HIV activity against cell-free and cell-associated 

virus, multidrug resistant virus, vaginal cell viability studies, and sperm viability 

studies were performed for the selected compounds. Among the compounds, 5'-0-(12-

azidododecanoyl) (KP-1), 5'-0-myristoyl (KP-16), and 5'-0-(12-thioethyldodecanoyl) 

(K.P-17) derivatives of FLT with EC50 values of 0.4 µM, 1.1 µM, and < 0.2 µM, 

respectively, against cell-free virus were found the most potent compounds with 

minimal cellular toxicity, and were selected for further studies. The tetradecanol ether 

analogs of FLT (1.7, EC5o = 176 µM) and AZT (1.8, EC5o = 27.6 µM) were found to 

be inactive under similar conditions because of the lack of hydrolysis to the parent 

compounds, nucleosides and myristic acid. The data suggest that the ester hydrolysis 

to FLT or AZT and fatty acids was critical for producing the anti-HIV activity. A 

number of FLT derivatives were further studied to determine their physicochemical 

properties (e.g., solubility, Log P, pKa) and cellular uptake. Cellular uptake studies 

were conducted on CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of 

FLT attached through ~-alanine (1.5) or 12-aminododecanoic acid (1.6) as linkers. 

Fluorescein-substituted analog of FLT with long chain length (1.6) showed > 12 times 

better cellular uptake profile than analog with short chain length (1.5). Cellular uptake 

studies revealed that the attachment of fatty acid improves the cellular uptake of the 
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nucleoside conjugate. KP-1 and KP-17 are currently under evaluation m the 

preclinical studies. 

1.2. Introduction 

Alovudine (FLT, 3'-fluoro-2',3'-dideoxythymidine) is a thymidine nucleoside 

analogue and a potent human immunodeficiency virus (HIV) reverse transcriptase 

(RT) inhibitor. FLT showed 10 times more potency against HIV 1 when compared 

with Zidovudine (AZT) and was even active against AZT resistant virus (Kong et al., 

1992). FLT displayed similar pharrnacokinetic parameters as AZT and Stavudine 

(d4T) in monkey and rats (Schinazi et al., 1990 and Boudinot et al., 1991). 

Once enters the cell, FLT gets converted into FLT triphosphate by the action of 

host cellular kinases (Kong et al., 1992). FLT triphosphate is then incorporated into 

the DNA of HIV leading to chain termination at 3'-position. FLT is also a potent 

inhibitor of RT enzyme, which coverts viral RNA into proviral DNA (Mansuri et al. , 

1990) (Figure 1.1 ). 

FLT was under clinical evaluation from 1990- 1992. The studies were stopped 

after FLT failed phase II clinical trials because of the observed hematological 

toxicities including neutropenia, leucopenia, and anemia (Rusconi, 2003). The toxicity 

of FLT was suggested to be the result of DNA damage and apoptosis (Sundseth et al., 

1996). In 2001, Medivir (Sweden) again started the phase II clinical trials of FLT 

(Rusconi, 2003). The trials were conducted on fifteen HIV infected patients with 7.5 
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mg/day alovudine and all the patients showed significant reduction in HIV load with 

no serious side effects. In the latest study, alovudine was used in doses of 0.5, 1.0 and 

2.0 mg/day for four weeks to test the viral inhibition (Ghosn et al., 2007). The results 

indicated that FLT produced modest viral load reduction but could not produce the 

desired clinical anti-viral activity. 

N-Myristoyl transferase (NMT) enzyme is involved in catalyzing the 

myristoylation of several proteins in HIV life cycle (e.g., capsid protein pl 7, Pr160gag­

P01, Pr55gag, p27nef). At N-terminal glycine, viral proteins (gag and nef) are covalently 

attached to myristic acid in the presence of NMT. Myristic acid attachment makes the 

proteins more hydrophobic, which improves protein-protein and protein-membrane 

interactions (Farazi et al., 2001). For example, after the N-myristoylation, p17 protein 

localizes itself towards the cell membrane, where new virus is produced (Wu et al., 

2004) (Figure 1.1). 

The replication of HIV-1 can be inhibited by heteroatom-containing analogs of 

myristic acid without accompanying cellular toxicity (Bryant et al., 1993, Takamune 

et al. , 2002). It has been previously reported that several fatty acids, such as 2-

methoxydodecanoic acid, 4-oxatetradecanoic acid, and 12-thioethyldodecanoic acid, 

reduce HIV-1 replication in acutely infected T-lymphocytes. For example, 12-

thioethyldodecanoic acid was moderately active (EC50 = 9 .4 µM) against HIV-infected 

T4 lymphocytes (Parang et al., 1997). 
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It is hypothesized that the attachment of nucleoside analogs to the long chain 

myristic acid analogs enhances their lipophilicity and thus their cellular uptake. Once 

the ester conjugate enters the cells, it gets hydrolyzed by esterases and generates two 

active molecules, nucleoside analog and fatty acid, targeting reverse transcriptase (RT) 

and N-myristoyl transferase (NMT) enzymes, respectively (Figure 1.1 ). 

A number of 5'-0-fatty acyl derivatives of FLT were previously reported to 

have better and wider activity profile than FLT (Parang et al., 1996, 1997). These 

compounds were designed to act as bifunctional anti-HIV agents targeting two 

important enzymes for viral reproduction. Herein, we report the synthesis of additional 

compounds, a more extensive evaluation of biological activities of 5'-0-fatty acyl 

derivatives of FLT in comparison with 5'-0-fatty acyl derivatives of AZT and parent 

nucleosides, cellular uptake, mechanistic studies, and their applications as anti-HIV 

agents and microbicides. 

Microbicides are the compounds that can be applied inside the vagma or 

rectum topically to protect against sexually transmitted diseases including HIV. There 

is an urgent need to develop a safe over-the-counter intravaginal/intrarectal anti-HIV 

microbicide for prevention of HIV transmission. 

1.3. Materials and Methods 

1.3.1. Materials 

FLT was synthesized in 5 g scale according to the previously reported method 

(Herdewijn et al., 1987). FLT and AZT were purchased from Euro Asia Tran 
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Continental (Bombay, India) for large-scale synthesis of ester conjugates. 12-

Bromododecanoic acid was purchased from Sigma Aldrich Chemical Co. 5(6)-

Carboxyfluorescein (FAM) was purchased from Novabiochem. All the other reagents 

including solvents were purchased from Fisher scientific. 

The products were purified on a Phenomenex®Gemini 10 µm ODS reversed-

phase column (2.1 x 25 cm) with Hitachi HPLC system using a gradient system at 

constant flow rate of 17 ml/min (Table 1.1 ). 

Table 1.1. HPLC method used for purification of the compounds. 

Time Water Acetonitrile Flow rate 
(min) Concentration Concentration (mL/min) 

A(%) B (%) 
0.00 100.0 0.0 1.0 

1.0 100.0 0.0 17.0 

45.0 0.0 100.0 17.0 

55.0 0.0 100.0 17.0 

59.0 100.0 0.0 17.0 

60.0 100.0 0.0 1.0 

The purity of the compounds was confirmed by usmg analytical Hitachi 

analytical HPLC system on a C18 column (Grace Allsphere ODS 2-3 µ, 150 X 4.6 

mm) using a gradient system (water:acetonitrile 30:70 v/v) at constant flow rate of 1 

ml/min with a UV detection at 265 run. The chemical structures of final products were 

characterized by nuclear magnetic resonance spectrometry (1H NMR and 13C NMR) 

determined on a Bruker NMR spectrometer ( 400 MHz) and confirmed by a high-

resolution PE Biosystems Mariner API time-of-flight electrospray mass spectrometer. . 
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Chemical shifts are reported in parts per millions (ppm) and confirmed by a high­

resolution PE Biosystems Mariner API time-of-flight electrospray mass spectrometer. 

For cellular uptake studies, cells were analyzed by flow cytometry (F ACSCalibur: 

Becton Dickinson) using FITC channel and CellQuest software. Cell-viability studies 

were conducted using Cellometer Auto T.4 (Nexcelom Biosciences). The real time 

microscopy in live CCRF-CEM cell line with or with compounds were imaged using 

ZEISS Axioplan 2 light microscope equipped with transmitted light microscopy with a 

differential-interference contrast method and an Achroplan 40X objective. 

1.3.2. Chemistry 

1.3.2.1. 5'-0-(Fatty Acyl) Ester Derivatives of FLT and AZT 

First, Several 5'-0-(fatty acyl) ester derivatives of FLT and AZT were 

synthesized at scale of 100 mg according to the previously reported procedure (Parang 

et al. , 1998) by the reaction of FLT and fatty acyl chloride derivatives in the presence 

of 4-dimethylaminopyridine (DMAP). In the next step, three FLT esters [5'-0-

(myristoyl)-3'-fluoro-2',3'-dideoxythymidine (KP-16), 3'-fluoro-2',3'-dideoxy-5'-0-

(12-azidododecanoyl)thymidine (KP-1 ), and 3 '-fluoro-2 ',3 '-dideoxy-5 '-0-(12-

thioethyldodecanoyl)thymidine (KP-17)] were synthesized at larger scale of 5 g, and 

25 g. Fatty acyl chloride derivatives were synthesized by the reaction of fatty acids 

with oxalyl chloride. 

In general, a reaction mixture consisting of the appropriate fatty acid (1.3 

mmol), oxalyl chloride (0.25 g, 1.95 mmol), and anhydrous benzene (18 mL) was 

stirred at room temperature (25 °C) for 1 h. the yellow solution thus obtained was 
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evaporated to dryness under reduced pressure. The residual oil was dissolved in 

benzene (18 mL) and the solution was added dropwise to an ice-cold, stirred solution 

consisting of the AZT (0.34 g, 1.3 mrnol) or the FLT (0.32 g, 1.3 mrnol), DMAP (0.23 

g, 1.9 mmol) and anhydrous benzene (18 mL) under anhydrous conditions. The 

solution was stirred in an ice bath for 1 h and then refluxed in an oil bath for about 3 h. 

the mixture was cooled and diluted with benzene (72 mL). The organic solution was 

washed with saturated aqueous sodium carbonate (2 x 11 mL) and then with water (2 

x 11 mL). The organic layer was dried over anhydrous sodium sulfate and was 

evaporated to dryness. The residue consisting of one major product was purified by 

silica gel chromatography using chloroform as eluent to yield the product. The 

procedure was used for the synthesis of most of ester analogs, unless noted otherwise. 

(±)-3'-Azido-2 ',3 '-dideoxy-5 '-0-(pentadecanoyl)thymidine (KP-6). Oil; yield (100 

mg, 90%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.00-8.10 (br s, lH, N-H), 7.24 (s, 

lH, H-6), 6.10-6.18 (m, lH, H-1'), 4.39 (dd, J= 12.2 and 4.3 Hz, lH, H-5\ 4.31 (dd, 

J= 12.2 and 4.3 Hz, lH, H-5\ 4.15-4.23 (m, lH, H-3\ 4.09 (dd, = 4.3 and 8.7 Hz, 

IH, H-4\ 2.28-2.52 (m, 3H, CH2COO, H-2", H-2\ 1.95 (s, 3H, 5-CH3), 1.60-1.72 

(m, 2H, CH2CH2COO), 1.22-1.31 (br s, 22H, methylene protons), 0.89 (t, J= 6.4 Hz, 

3H, CH3). 

(±)-3 '-Azido-2 ',3 '-dideoxy-5 '-0-(2-methoxyteradecanoyl)thymidine (KP-8). Oil; 

yield (100 mg, 90%); 1H NMR (400 MHz, CDCh, 8 ppm): 9.00 (s, lH, N-H), 7.28 (s, 

lH, H-6), 6.17 (t, J= 6.2 Hz, lH, H-1'), 4.50 (dd, J= 12.2 and 3.7 Hz, lH, H-5), 4.35 
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(dd, J= 12.2 and 3.7 Hz, lH, H-5\ 4.20 (ddd, J = 7.6, 6.2, and 5.0 Hz, lH, H-3\ 

4.10 (ddd, = 5.0, 3.7, and 3.0 Hz, lH, H-4\ 3.38 (t, J= 7.6 Hz, lH, CHCO), 3.39 (s, 

3H, OCH3), 2.50 (ddd, J = 13.9, 6.2, and 6.2 Hz, lH, H-2"), 2.37 (ddd, J = 13.9, 7.6 

and 6.2 Hz, H-2\ 1.95 (s, 3H, 5-CH3), 1.70-1.80 (m, 2H, CH2CH(OCH3)), 1.32-1.42 

(m, 2H, CH2CH2CH(OCH3)), 1.22-1.31 (br m, 18H, methylene protons), 0.89 (t, J = 

7.6 Hz, 3H, CH3); HR-MS (ESI-TOF) (m/z): C2s~1Ns06, calcd, 507.3057; found, 

530.6788 [M +Nat. 

{±)-3'-Fluoro-2',3'-dideoxy-5'-0-(2-methoxyteradecanoyl)thymidine (KP-15). Oil; 

yield (100 mg, 90%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.50 (s, lH, NH), 7.31 (s, 

lH, H-6), 6.40 (dd, J= 9.0 and 5.6 Hz, lH, H-1'), 5.08-5.26 (dd, J= 52.5 and 5.5 Hz, 

lH, H-3'), 4.46 (dt, J= 25.6 and 4.0 Hz, lH, H-4'), 4.55 (dd, J= 12.5 and 4.1 Hz, lH, 

H-5'), 4.25 (dd, J = 12.5 and 4.1 Hz, lH, H-5"), 3.38 (t, J = 7.6 Hz, lH, CHCO), 1.95 

(s, 3H, 5-CH3), 2.55-2.72 (m, lH, H-2"), 2.15-2.25 (m, lH, H-2'), 1.70-1.80 (m, 2H, 

CH2CH(OCH3)), 1.32-1.42 (m, 2H, CH2CH2CH(OCH3)), 1.20-1.30 (br m, 18H, 

methylene protons), 0.87 (t, J = 7.6 Hz 3H, CH3). HR-MS (ESI-TOF) (m/z): 

C2sH41fN206, calcd, 484.2949; found, [M +Nat, 

1.3.2.2. 5(6)-Carboxyfluorescein Derivatives of FLT 

General Procedure for the Synthesis of 3'-Fluoro-2',3'-dideoxy-5'-0-(3-

aminopropanoyl)thymidine (1.3) and 3 '-Fluoro-2 ',3 '-dideoxy-5'-0-(12-

aminododecanoyl)thymidine (1.4). FLT (0.60 mmol, 150 mg), the appropriate 

Fmoc-amino acid (1.2 mmol), and 2-(lH-benzotriazole-l-yl)-1,1,3,3-
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tetramethyluronium hexafluorophosphate (HBTU, 500 mg, 1.3 mmol) were dissolved 

in dry DMF (10 mL) and dry N-methylmorpholine (2 mL). The solution was stirred 

overnight at room temperature. Reaction mixture was concentrated and dried under 

reduced pressure to afford crude 5'-0-Fmoc-amino acid derivatives of FLT, 1.1 and 

1.2. The crude products compounds were dissolved in THF (10 mL). To the reaction 

mixture was added piperidine (6 µL, 0.06 mmol), 1-octanethiol (10 mM solution in 

THF, 6 mmol, 0.6 mL). The reaction mixture was allowed to stir for 1 h at room 

temperature. The reaction solution was concentrated at reduced pressure. The residue 

was purified with reversed phase HPLC using C18 column and using a gradient system 

water/acetonitile as solvents as described above. 

3 '-Fluoro-2 ',3 '-dideoxy-5 '-0-(3-aminopropanoyl)thymidine (1.3). White Powder; 

yield (100 mg, 55%). HR-MS (ESI-TOF) (m/z): C13H1sFN30 5: calcd. 315.1230; found 

316.3369 [M +Ht, 631.4397 [2M +Ht. 

3 '-Fluoro-2 ',3 '-dideoxy-5 '-0-(12-aminododecanoyl)thymidine (1.4). White 

Powder; yield (150 mg, 57%). 1H NMR (400 MHz, CD30D, 8 ppm): 11.38 (s, lH, 

NH), 7.81-7.98 (br s, 2H, NH2), 7.45 (s, lH, H-6), 6.18 (t, J= 7.9 Hz, H-1'), 5.30 (dd, 

J = 53.2 and 4.2 Hz, lH, H-3'), 4.15-4.36 (m, 3H, H-5', H-5", H-4'), 3.15 (t, J = 8.2 

Hz, 2H, CH2NH), 2.68-2.82 (m, 2H, CH2CO), 2.21-2.52 (m, 4H, CH2CH2NH, H-2', 

H-2"), 1.76 (s, 3H, 5-CH3), 1.05-1.24 (br m, 16H, methylene envelope); 13C NMR 

(DMSO-d6, 100 MHz, 8 ppm): 173.08 (COO), 164.07 (C-4 C=O), 150.87 (C-2 C=O), 

136.08 (C-6), 110.03 (C-5), 94.38 (d, J= 175.5 Hz, C-3'), 84.66 (C-1'), 82.03 (d, J= 
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25.8 Hz, C-4'), 63.49 (d, J= 10.6 Hz, C-5'), 55.32, 51.54 (CH2NH), 36.33 (d, J= 20.6 

Hz, C-2'), 33.73 (CH2COO), 29.30, 29.25, 29.12, 28.96, 28 .91, 28.84, 27.41, 26.23, 

24.79, 23 .51 (methylene carbons), 13.86 (5-CH3). HR-MS (ESI-TOF) (m/z): 

c22H36FN30s: calcd. 441.5367; found 442.1974 [M +Ht, 883.5248 [2M +Ht. 

General Procedure for the Synthesis of 5'-0-(5(6)-Carboxyfluorescein) 

Derivatives of FLT (1.5 and 1.6) 

FLT was attached to 5(6)-carboxyfluorescein through ~-alanine and 12-

aminododecanoic acid as linkers. A mixture of 5(6)-carboxyfluroscein (430 mg, 1.15 

mmol), the corresponding FLT-amino acid (1.3 and 1.4, 0.29 mmoL), and HBTU (440 

mg, 1.15 mmol) were dissolved in dry DMF (10 mL) and diisopropylethylamine 

(DIPEA, 2 mL, 15 mmol) and stirred overnight at room temperature. Reaction mixture 

was concentrated and dried under vacuum. Final compounds were purified with 

reversed phase HPLC using C 18 column and water/acetonitile as solvents as described 

above. 

3'-Fluoro-2 ',3 '-dideoxy-5 '-0-(3-(N(5(6)­

carboxyfluorescein)aminopropanoyl)thymidine (1.5). Yield (25 mg, 15 %). 1H 

NMR (400 MHz, CD30D, 8 ppm): 8.48 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 8.19 (d, 

J = 8.2 Hz, 0.5H, F AM-Ar-H, 5 or 6 isomer), 8.04, 8.13 (two dd, J = 1.6 and 8.0 Hz, 

lH, FAM-Ar-H), 7.58 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 7.20-7.42 (m, lH, H-6, 

and 0.5 H FAM-Ar-H, 5 or 6 isomer), 6.96-7.05 (m, 4H, FAM-Ar-H), 6.84 (d, J = 8.9 

Hz, 2H, FAM-Ar-H), 6.11and6.17 (two dd, J= 5.6 and 8.9, lH, H-1'), 5.16 and 5.23 
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(two dd, J= 53.3 and 5.0 Hz, lH, H-3'), 4.20-4.40 (m, 3H, H-5' and H-5", H-4'), 3.53 

and 3.64 (two t, J = 6.5 Hz, 2H, CH2NH), 2.10-2.74 (m, 4H, H-2', H-2", CH2CO), 

1.72 and 1.78 (two s, 3H, 5-CH3); 13C NMR (CD3CN, 100 MHz, o ppm): 172.63 

(COO), 172.47 (NHCO), 168.06, 165.63, 156.25 (FAM-Ar-C), 160.49 (C-4 C=O), 

151.20, 151.14 (C-2 C=O), 139.64, 133.27, 131.43, 129.24, 129.60, 127.37, 127.82, 

126.07 (FAM-Ar-C), 136.46, 136.52 (C-6), 116.84 (FAM-Ar-C), 113.47, 113.58 (C-

5), 102.83 (FAM-Ar-C), 94.31, 94.19 (two d,J= 176.5 Hz, C-3'), 85.53, 85.57 (C-1'), 

82.57, 82.48 (two d, J = 26.8 Hz, C-4'), 64.13, 64.00 (two d, J = 11.2 Hz, C-5'), 

55.11 , 49.09 (Cl-hNH), 36.07, 35.97 (C-2'), 33.76, 33.89 (CH2COO), 11.95, 12.01 (5-

CH3). HR-MS (ESI-TOF) (m/z): C34H2sFN3011: calcd. 673.1708; found 674.5083 [M 

+Ht, 1348.6951 [2M + H( 

3'-Fluoro-2 ',3 '-dideoxy-S'-0-(12-(N(S(6)­

carboxyfluorescein)aminododecanoyl)thymidine (1.6). Yield (30 mg, 13%); 1H 

NMR (400 MHz, CD30D, o ppm): 8.45 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 8.17 (dd, 

J= 1.5 and 8.0 Hz, 0.5H, FAM-Ar-H, 5 or 6 isomer), 8.10 (s, lH, FAM-Ar-H), 7.64 

(s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 7.43 (s, lH, H-6), 7.30 (d, J = 5.1 Hz, 0.5H, 

FAM-Ar-H, 5 or 6 isomer), 6.76 (s, lH, FAM-Ar-H), 6.70 (dd, J = 3.2 and 8.7 Hz, 

3H, FAM-Ar-H), 6.61 (dd, J= 2.0 and 8.7 Hz, 2H, FAM-Ar-H), 6.16-6.26 (m, lH, H-

1'), 5.20 (dd, J= 53.4 and 4.9 Hz, lH, H-3'), 4.30-4.45 (m, 2H, H-5' and H-5"), 4.19 

(d, J= 5.5 and 13.6 Hz, lH, H-4'), 3.38 (t, J= 7.0 Hz, 2H, CH2NH), 2.44-2.63 (m, lH, 

H-2'), 2.15-2.38 (m, 3H, CH2CO, H-2"), 1.83 (s, 3H, 5-CH3), 1.47-1.66 (m, 4H, 

CH2CH2COO, CH2CH2-NH), 1.05-1.24 (br m, 16H, methylene envelope); 13C NMR 
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(CD30D, 100 MHz, 8 ppm): 174.85 (COO), 170.11 (NHCO), 168.34, 166.35, 155.35 

(FAM-Ar-C), 163.45 (C-4 C=O), 152.29 (C-2 C=O), 142.15, 138.28, 137.40, 131.01, 

129.46, 126.86, 126.08, (FAM-Ar-C), 135.12 (C-6), 115.14 (FAM-Ar-C), 112.02 (C-

5), 103.72 (FAM-Ar-C), 95.32(d,J=177.6 Hz, C-3'), 86.92 (C-1'), 84.15 (d,J=26.3 

Hz, C-4'), 64.66 (d, J = 11.7 Hz, C-5'), 54.98, 41.40 (CH2NH), 38.83 (d, J = 21.0 Hz, 

C-2'), 35.02 (CH2COO), 30.77, 30.74, 30.68, 30.59, 30.54, 30.45, 30.41, 30.34, 30.26, 

30.21, 28.18, 26.10 (methylene carbons), 12.81 (5-CH3). HR-MS (ESI-TOF) (m/z): 

C43!ii6FN3011: calcd. 799.3116; found 800.4325 [M +Ht. 

1.3.2.3. General Procedure for the Synthesis of 3'-Fluoro-2',3'-dideoxy-5'-0-

(tetradecanyl)thymidine (1.7) and 3'-Azido-2',3'-dideoxy-5'-0-

(tetradecanyl)thymidine (1.8). Ether derivatives of AZT and FLT were synthesized 

by using Mitsunobu reaction. AZT or FLT (100 mg, 0.4 mrnol), tetradecanol (0.8 

mmol), and triphenylphosphine (TPP, 210 mg, 0.8 mrnol) were dissolved in DMF (10 

mL). To the reaction mixture was added diisopropylazodicarboxylate (DIAD, 100 mg, 

0.5 mrnol)). The mixture was stirred for 5 h at room temperature. The solvent was 

removed in vacuo. The residue was purified by reversed phase HPLC using C1s 

column and water/acetonitile as solvents as described above. 

3 '-Fluoro-2 ',3 '-dideoxy-5 '-0-( tetradecanyl)thymidine (1. 7). White Powder; yield 

(80 mg, 50%); 1H NMR (400 MHz, CDCh, 8 ppm): 7.52 (s, lH, H-6), 6.19 (dd, J= 

9.0 and 5.6 Hz, lH, H-1'), 5.18 (dd, J= 54.0 and 4.6 Hz, lH, H-3'), 4.18 (d, J= 27.5 

Hz, lH, H-4'), 3.65-3.86 (m, 4H, CH20, H-5' and H-5"), 2.34-2.52 (m, lH, H-2'), 

28 



www.manaraa.com

2.10-2.34 (m, lH, H-2"), 1.77 (s, 3H, 5-CH3), 1.37-1.55 (m, 2H, CH2CH20), 1.05-

1.24 (br s, 20 H, methylene envelope), 0.74 (s, 3H, CH3); 13C NMR (CDCh, 100 MHz, 

8 ppm): 163.35 (C-4 C=O), 150.65 (C-2 C=O), 134.57 (C-6), 109.98 (C-5), 94.37 (d, J 

== 176.8 Hz, C-3'), 86.75 (C-1'), 85.20 (d, J= 24.2 Hz, C-4'), 61.95 (d, J= 11.0 Hz, C-

5'), 41.28 (CH2-0), 38.15 (d, J = 20.9 Hz, C-2'), 32.45, 31.65, 29.38, 29.28, 29.22, 

29.08, 27.31, 26.72, 25.54, 22.41 (methylene carbons), 13.81 (CH3), 12.94 (5-CH3). 

HR-MS (ESI-TOF) (m/z): C24H41FN204: calcd. 440.305; found 441.1052 [M +Ht. 

3 '-Azido-2 ',3 '-dideoxy-5'-0-(tetradecanyl)thymidine (1.8). White Powder; yield 

(90 mg, 50%. 1H NMR (400 MHz, CDCh, & ppm): 7.35 (s, lH, H-6), 6.02 (t, J= 6.6 

Hz, lH, H-1'), 4.35 (dd, J= 5.1, 11.5 Hz, lH, H-3'), 3.88-3.96 (m, 2H, H-5' and H-5"), 

3.85 (t, J= 7.3 Hz, lH, CH20), 3.76 (d, J= 10.6 Hz, lH, H-4'), 2.40-2.54 (m, lH, H-

2'), 2.28-2.40 (m, lH, H-2"), 1.86 (s, 3H, 5-CH3), 1.53 (t, J = 6.3 Hz, 2H, CH2CH20), 

1.12-1.30 (br s, 20H,methylene envelope), 0.82 (t, J = 6.6 Hz, 3H, CH3); 
13C NMR 

(CDCh, 100 MHz, & ppm): 163.28 (C-4 C=O), 150.72 (C-2 C=O), 134.58 (C-6), 

110.29 (C-5), 87.23 (C-1'), 84.47 (C-4'), 61.89 (C-5'), 59.90 (C-3'), 41.46 (CH20), 

37.35 (C-2'), 31.85, 29.58, 29.53, 29.48, 29.28, 29.24, 27.51, 26.93, 22.62, (methylene 

carbons), 14.05 (CH3), 13.22 (5-CH3). HR-MS (ESI-TOF) (m/z): C24H41N 504: calcd. 

463.3159; found 464.1528 [M +Ht. 

1.3.3. Physicochemical Properties (pKa, Log P, Log D., Solubility). 

Physicochemical properties including pKa, LogD, and solubility were 

determined for KP-1 as a model compound. 
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1.3.3.1. pKa 

The pKa of KP-1 was determined using the D-PAS (spectroscopic) technique. 

The sample was initially titrated in a fast titration between pH 1.8 and pH 12.1 at 

concentrations of 33-49 µM under aqueous conditions. Precipitation of the sample 

from solution was observed below approximately pH 11 . The sample was 

subsequently titrated under methanol-water cosolvent conditions in two triple titrations 

from pH 12.2 to pH 3. 7 at concentrations of 31-49 µM. The methanol ratio varied 

from to 25.5-50.8%. No precipitation of the sample from solution was observed under 

this condition. The pKa was determined from the spectroscopic data by Yasuda­

Shedlovsky extrapolation of the individual obtained results. KP-1 was found to have 

an aqueous pKa value of 9.67 ± 0.02 determined by spectroscopic method under 

methanol-water cosolvent conditions. 

1.3.3.2. Log P and Log D 

It was not possible to measure the partition coefficient of the fatty acyl 

derivatives of FLT and AZT in standard n-octanol/water mixture, because of the 

insolubility of the compounds in water. The Log P of KP-1 was initially investigated 

by the pH-metric (potentiometric) method. The sample was titrated in three triple 

titrations from pH 2. 5 to pH 11 . 9 at concentrations of 0. 7-1.1 mM in various ratios of 

octanol/water. The results indicated high sample lipophilicity although the Log P 

could not be determined potentiometrically due to the apparent pKa in octanol shifting 

out of the measurable range. 
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Log D Determination by LDA- Liquid Liquid Distribution Chromatography 

The Log D at pH 7.4 was measured as 5.04 using liquid chromatography. The 

ProfilerLDA is an isocratic chromatography system, which uses an octanol-coated 

column with octanol saturated mobile phases adjusted to pH 7.4. 

A set of standard compounds with well known Log D octanol values are run 

through the column before the samples, the generated retention times are used as a 

calibration curve to relate retention times generated for sample compounds to Log D 

(Table 1.2., Figure 1.2). 

Table 1.2. Log D values and retention time for standard compounds 

Standard Name 

Compounds 

Benzophenone 
Diphenylamine 
Diphenylether 

Dibutylphtalate 

Change in energy counts (summed) 

600000 

500000 

400000 

300000 

200000 

100000 

LDA Calibration 3 

LogD 

3.1800 
3.5000 
4.0000 
4.6000 

Retention 
Time 
109.00 
197.70 
420.79 
1067.35 

·2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4 .5 5.0 5.5 
logo 

Figure 1.2. Standard curve (LDA Calibration 3) for Standard compounds. 
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Detection was carried out by using an UV diode array. A multi-wavelength 

peak location system is used to home on the largest peak present in the chromatogram. 

This reduces interference from impurity peaks to a minimum (assuming that impurities 

are much smaller in size than the sample peak). It is assumed that the largest peak in 

the chromatogram is the compound of interest as there is no positive identification in 

this system (e.g. MS detection). A value of 5.04 was obtained, which should 

correspond to the neutral Log P, in consideration of the sample pKa (Figure 1.3, Table 

1.3). 

Table 1.3. LogD values and retention time for KP-1 

Test Name 

Compounds 

KP-1 

Change in energy counts (summed) 
180000 

160000 

140000 

120000 
100000 

80000 

KP-1 

LogD 

5.04 

Retention 
Time 

2205.69 

60000 

40000 

20000 
0 J_~~~~-==:::=::::::".~==~~~~~~~~'!!!._~~ 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 
logD 

Figure 1.3. LDA calibration 3 curve for KP-1 

1.3.3.3. Solubility 

Difficulties were also encountered in our solubility analysis of KP-1 due to the 

low sample solubility in ionized form and suspected sample decomposition at high pH. 
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We were able to determine an upper limit for the sample solubility of 510 nM by 

shake-flask methodology, however. 

The sample solubility was initially analyzed using the Sirius CheqSol method. 

The sample was titrated under aqueous conditions from pH 12.1 to low pH at an initial 

concentration of 3.1 mM. As full sample dissolution was not evident at the start of the 

CheqSol study, the experiment was paused and the sample was sonicated in an 

ultrasonic bath containing hot water, for several minutes. When the experiment was 

resumed, sample precipitate was only observed below approximately pH 7, where a 

second sample ionization stage was apparent. We consider the sample to have 

decomposed to produce another species with a significantly lower acidic pKa during 

the "hot"-sonification at high pH. To avoid further complication due to sample 

decomposition, the sample solubility was subsequently investigated by shake-flask 

methodology with UV -spectroscopic sample detection. 

To produce a saturated solution of KP-1, approximately 1 mg of solid material 

was added to 10 mL of aqueous solution, adjusted to pH 2.3 with 0.5 M HCI. The 

sample was then sonicated in an ultrasonic bath for several hours (at room 

temperature) before being left to equilibrate for a period of approximately three days. 

The supernatant was then filtered under vacuum through a 0.2 µm PVDF filter plate, 

and the UV absorption spectrum of the sample was measured (after adjusting the pH 

of the solution to 11.8 with 0.5M KOH). Molar absorption coefficients of KP-1 were 

obtained at pH 11.8 for 25 µM, 50 µM and 100 µM solutions of KP-1, in order to 
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quantify the concentration of sample in the saturated supernatant. The UV-absorption 

signal (0.0039) of the supernatant at the absorption maximum of KP-1 (264 nm, CY= 

7650 dm3cm-1Mor1
) (Figure 1.4) was close to the detection limit of the apparatus and 

it is considered appropriate to quote the solubility value determined as an upper limit. 

The intrinsic aqueous solubility of KP-1 is therefore determined to be <510 nM. KP-1 

was completely soluble in ethanol (>30 mg/rnL) and the mixture of water/methanol 

(60:40). KP-1 was less soluble in DMSO (~4.1 mg/mL). 

250 260 270 280 290 300 310 320 330 340 350 

Wavelength I nm 

Figure 1.4. Average KP-1 molar extinction coefficients between 250-350 nm at pH 
11.8. The curve is the average of spectra collected at sample concentrations of 25 µM, 
50µM and lOOµM. 

1.3.4. Anti-HIV Assays 

Anti-HIV activities of the compounds were evaluated according to the 

previously reported procedure (Krebs et al., 1999). In summary, HeLa (Human 

cervical carcinoma: ATCC CCL-2.1) cell line was used to measure inactivation of 

both cell-free virus preparations and virus-infected cell preparations. Cells were plated 
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in culture plates 24 hrs prior to each experiment. Cell-free viral preparations of HIV-1 

strains IIIB (lymphocytotropic strain) and BaL (monocytotropic strain) were used for 

cell-free assay. For cell-associated assay, SulTl cells were infected with IIIB virus 5 

days prior to the experiment. Cell-free virus and virus-infected cells were mixed with 

different compounds and diluted to make different concentrations. The mixture was 

further diluted with the buffer and added to the HeLa cells. The cells were incubated at 

37 °C for 48 h, stained for P-galctosidease expression and compared with P­

galctosidease expression from the P-gal-positive cells in absence of any microbicidal 

compound to get IC5o values. 

1.3.5. Cellular Uptake Study 

All of the stock solutions for compounds FAM, 1.5, and 1.6 were prepared in 

DMSO. The human T lymphoblastoid cells CCRF-CEM (ATCC No. CCL-119) were 

grown on 25 cm2 cell culture flasks with RMPI-1640 medium containing 10% fetal 

bovine serum. Upon reaching about 70% confluency, the cells were treated as 

described below and incubated for 1 h or longer at 37 °C. 

1.3.5.1. Cellular Uptake of FAM, 1.5 and 1.6 at Different Time Points 

When the cells reached about 70% confluency, FAM, 1.5, or 1.6 (1 mL, 20 

µM) in RMPI-1640 medium were added to 1 mL of cells to make the final 

concentration as 10 µM. The cells were incubated for 0.5, 1, 2, 4 and 8 h at 37 °C. 

Then the flow cytometry assays were performed as described below. 
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1.3.5.2. Cellular Uptake of 1.6 at Different Concentrations 

When the cells reached about 70% confluency, 1 mL of graded concentrations 

(0, 10, 20, 40, 80, and 200 µMin RMPI-1640) of 1.6 was added to 1 mL of cells to 

make the final concentration as 0, 5, 10, 20, 40 and 100 µM. The cells were incubated 

for 1hat37 °C. Then the flow cytometry assays were performed as described below. 

1.3.5.3. Cellular Uptake of FAM, 1.5 and 1.6 with Trypsin Treatment 

The assays were performed as previously described in section 1.3.5.1 at 1 h 

time point with the exception that the cells used were incubated with 0.25% 

trypsin/0.53 mM EDTA for 5 min before washing with PBS (pH 7.4) for flow 

cytometry studies. 

1.3.5.4. Flow Cytometry 

The cells were washed twice with PBS (pH 7.4) at 2000 rpm for 5 min. Then 

the cells were analyzed by flow cytometry (F ACSCalibur: Becton Dickinson) using 

FITC channel and CellQuest software. The data presented are based on the mean 

fluorescence signal for 10000 cells collected. All the assays were carried out in 

triplicate. 

1.3.6. Cell Viability Assay 

When the cells reached about 70% confluency, the cells were incubated with a 

solution of CCRF-CEM cell alone or 10 µM FAM, 1.5, or 1.6 for 24 hat 37 °C. Then 

20 µL of the cells from each flask were treated with 2 µL of trypan blue (0.1 %) for 1 
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min. The cells were then transferred to a Cellometer® counting slide and analyzed 

using Cellometer® Auto T.4 (Nexcelom Bioscience). All the assays were performed 

in triplicate. 

1.3.7. Real Time Fluorescence Microscopy in Live CCRF-CEM Cell Line 

The cellular uptake studies and intracellular localization of CCRF-CEM cell 

alone, or incubated with 1.5 and 1.6 were imaged using a ZEISS Axioplan 2 light 

microscope equipped with transmitted light microscopy with a differential­

interference contrast method and an Achroplan 40X objective. The human T 

lymphoblastoid cells CCRF-CEM (ATCC No. CCL-119) were grown on 60 mm Petri 

Dishes with RPMI-1640 medium containing 10% fetal bovine serum. Upon reaching 

about 70% confluency, the cells were incubated with a solution of 10 µM 1.5 or 1.6 

for 1 hat 37 °C. The cells were then observed under the fluorescent microscope under 

bright field and FITC channels ( 480/520 run). 

1.4. Results and Discussion 

1.4.1. Chemistry 

1.4.1.1. 5'-0-(Fatty acyl) Ester Derivatives of FLT and AZT 

FLT was synthesized using thymidine as the starting material according to 

previously reported procedure (Herdewijn et al. , 1987). 5'-0-(Fatty acyl) ester 

derivatives of FLT and AZT (Table 1.4) were synthesized from the reaction of FLT or 

AZT with the corresponding fatty acyl chloride in the presence of oxalyl chloride and 

DMAP as described previously (Parang et al; 1998) at the scale of 100 mg . KP-1, KP-
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l6, and KP-17 showed higher potency and minimal cellular toxicity when compared to 

the other compounds (Table 1.2). KP-1 and KP-17 were then synthesized in larger 

scale (25 g) for further biological evaluation, preclinical and formulation studies. 

Compounds were purified first by using silica gel column chromatography and then 

HPLC to achieve >99% purity. 

Table 1.4. Chemical structures of 5'-0-fatty acyl derivatives of AZT and FLT. 

0 

H3C~NH 
1 N~O 

R10~ 
R2 

Compd. R1 R1 Com pd. R1 R1 

AZT H NJ KP-10 CH3(CH2)40(CH2)1CO NJ 

FLT H F KP-12 Br(CH2)11CO F 

KP-1 NJ(CH2)11CO F KP-13 CH3(CH2)4S(CH2)1CO F 

KP-2 CH3(CH2)4S(CH2)1CO NJ KP-15 CHJ(CH2) 11CH(OMe )CO F 

KP-3 CH3CH2S(CH2)10CO NJ KP-16 CH3(CH2)12CO F 

KP-4 Br(CH2)11CO NJ KP-17 CH3CH2S(CH2)11CO F 

KP-5 CH3(CH2)12CO NJ 1.4 NH2(CH2)11CO F 

KP-6 CH3(CH2)13CO NJ 1.7 CH3(CH2)130 F 

KP-8 CH3(CH2)11CH(OMe )CO NJ 1.8 CH3(CH2)130 NJ 

KP-9 CH3(CH2)90(CH2)2CO NJ 

1.4.1.2 5(6)-Carboxyfluorescein derivatives of FLT 

FLT was attached to 5(6)-carboxyfluorescein usmg ~-alanine and 12-

aminododecanoic acid as linkers. First, FLT was reacted with the corresponding 

Fmoc-amino acid in presence of HBTU and DIPEA. Second, N-Fmoc deprotection to 
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free amino group was achieved in the presence of piperidine. Finally, FAM was 

attached to free amino group in the presence of HBTU and DIPEA to afford 5(6)-

carboxyfluorescein derivatives of FLT, 1.5 and 1.6 (Scheme 1.1). These compounds 

were used for cellular uptake studies to determine cellular uptake profile of fatty acyl 

ester derivatives of FLT. FLT attached to FAM through ~-alanine (1.5) was used as a 

control FLT analog. FLT attached to FAM through 12-aminododecanoyl (1.6) was 

used as an analog of 5'-0-(12-azidododecanoyl)-3'-fluoro-2',3'-dideoxy-thymidine 

(KP-1) and other fatty acid ester analogs of FLT. 

Fmoc-Arnino Acid, 
HBTU, DIPEA, DMF 

~J: 
Fmoc, J--L ,..0\dN 0 

N"' 'nl 0 
H 0 

F 

1.1 n=2 
1.2 n = 11 

~J: 
P;p";d;"', OotMoth;ol H,N~°'d O FAM, HBTU, DIPEA, DMF 

0 

F 
1.3 n = 2 
1.4 n = 11 

1.5 n = 2 
1.6 n = 11 

Scheme 1.1. Synthesis of 5'-carboxyfluorescein derivatives of FLT (1.5 and 1.6) 
through different linkers. 
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l.4.1.3. 5'-0-(Tetradecanol) ether derivatives of AZT and FLT 

AZT and FLT were reacted with tetradecanol in the presence of TPP and DIAD 

using Mitsunobu conditions to afford 5'-0-(tetradecanol) ether derivatives of AZT and 

FLT (1. 7 and 1.8) (Scheme 1.2). 

Tetradecanol, TPP, DIAD, DMF 

~J: 
N 0 

C
14

H
29-°'0 

R 
1.7 R = F 
1.8 R = N3 

Scheme 1.2. Synthesis of 5'-0-(tetradecanol) ether derivatives of FLT and AZT. 

1.4.2. Physicochemical Properties 

Physicochemical properties including pKa, LogD, and solubility were 

determined for KP-1 as a model compound 

1.4.2.1. pKa 

The pKa of KP-1 was determined using the D-PAS (spectroscopic) technique. 

The sample was subsequently titrated under methanol-water cosolvent conditions in 

two triple titrations from pH 12.2 to pH 3. 7 at concentrations of 31-49 µM. The pKa 

was determined from the spectroscopic data with an aqueous value of 9.67± 0.02, 

obtained by Yasuda-Shedlovsky extrapolation of the individual results obtained. 
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1.4.2.2. Log P and Log D 

The Log D was measured at pH 7.4 by liquid chromatography. The 

ProfilerLDA is an isocratic chromatography system, which uses an octanol-coated 

column with octanol saturated mobile phases adjusted to pH 7.4. A value of 5.04 was 

obtained, which should correspond to the neutral Log P, in consideration of the sample 

pKa. 

1.4.2.3. Solubility 

An upper limit for the sample solubility of 510 nM was determined by shake­

flask methodology with UV-spectroscopic sample detection. To produce a saturated 

solution of KP-1, approximately 1 mg of solid material was added to 10 rnL of 

aqueous solution, adjusted to pH 2.3 with 0.5 M HCI. The sample was then sonicated 

in an ultrasonic bath for several hours at room temperature and then equilibrated for a 

period of approximately three days. The supernatant was then filtered, and the UV 

absorption spectrum of the sample was measured. The UV-absorption signal (0.0039) 

of the supernatant at the absorption maximum of KP-1 (264 nm, CJ= 7650 dm3cm-

1Mor1) was close to the detection limit of the apparatus and it is considered 

appropriate to quote the solubility value determined as an upper limit. The intrinsic 

aqueous solubility of KP-1 is therefore determined to be <510 nM. KP-1 was 

completely soluble in ethanol (>30 mg/rnL) and the mixture of water/methanol 

(60:40). KP-1 was less soluble in DMSO (~4.1 mg/mL). 
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t.4.3. Biological Activities 

Tables 1.5-1.8 illustrate anti-HIV-1 activities against cell-free and cell­

associated virus, anti-sperm activity, vaginal cell cytotoxicity, and sperm inhibiting 

properties of the compounds. In summary, structure-function analysis revealed that the 

anti-HIV activity of 5'-substituted derivatives of FLT and AZT was clearly dependent 

on the nature of the 3'-substituent. 5'-0-Fatty acyl derivatives of FLT exhibited higher 

anti-HIV activities against HIV when compared to 5'-0-fatty acyl derivatives of AZT 

derivatives. For example, FLT derivatives (KP-1, KP-16, and KP-17) were more 

potent inhibitors of HIV replication than AZT derivatives (KP-2, KP-3, and KP-4) and 

AZT under the similar assay conditions. The FLT ester conjugate KP-16 was 

approximately 15-fold more potent than AZT in viral entry inhibition assay 

(lymphocytotropic strain) (Table 1.5). These results suggest that the increased 

inhibition by fatty acyl ester derivatives of FLT, KP-1, KP-15, KP-16, and KP-17, 

may be due to the intracellular release of FLT that is more potent than AZT released 

by fatty acyl ester derivatives of AZT. The inability of fatty acyl derivatives of AZT, 

KP-2, K.P-4, and KP-6, to enhance antiviral activity compared to AZT may be due to 

incomplete intracellular hydrolysis of the conjugates under the in vitro assay 

conditions. 

5'-0-Ether substituted FLT and AZT, 1.7 and 1.8, had tetradecanyl (myristyl) 

group instead of tetradecanoyl (myristoyl) ester group. The ether bond is not 

susceptible to the cleavage action of esterases, thus the hydrolysis of the tetradecanyl 

group from the conjugate in 1.7 and 1.8 is not possible. Ether derivatives of FLT and 
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AZT substituted with 5'-tetradecanol (1.7 and 1.8, Scheme 1.2) were significantly 

were less potent than the corresponding 5'-0-(tetradecanoyl) ester derivatives (KP-16 

and KP-5). The data demonstrate that the ester bonds are important in enabling anti­

HIV activity of fatty acyl ester derivatives of FLT and AZT. The ester moiety in the 

conjugates needs to be hydrolyzed rendering parent nucleosides and fatty acids. The 

data demonstrate the importance of ester group in 5'-fatty acyl derivatives of AZT and 

FLT, such as KP-6 and KP-16. The same conclusion can be extrapolated to KP-1 and 

KP-17. The ester group in KP-1 and KP-17 needs to be hydrolyzed to produce active 

moieties with anti-HIV activity. In other words, the anti-HIV activity is not due to the 

incorporation of the compounds in the HIV membrane and/or detergent effect, since 

lipophilic ether derivatives, 1.7 and 1.8, were not potent anti-HIV agents. 

Furthermore, the anti-HIV activity of 5'-substituted derivatives of FLT and 

AZT was dependent on the nature of the 5'-substituent. Among FLT derivatives, KP-1 , 

KP-15 , KP-16, and KP-17 derivatives had significant anti-HIV activity at 

concentrations that were not cytotoxic. As shown in Table 1.5, compounds KP-1, KP-

16, and KP-17 displayed EC50 values against cell-free X4 and RS viruses below 1 µM. 

KP-1, KP-16, and KP-17 were at least 7-fold more potent against X4 HIV-1 when 

compared with AZT. KP-1, KP-16, and KP-17 were also active against cell-associated 

HIV with EC50 values between 2.3 and 12.6 µM. On the other hand, FLT and AZT 

were not active against cell-associated virus, at least under the conditions tested. The 

difference in the activity of fatty acyl derivatives of FLT compared to each other and 

FLT may be due to their difference in their rate of uptake and intracellular hydrolysis 
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yielding two antiviral agents, FLT and fatty acid analog, targeting different enzymes 

in HIV life cycle. 

Table 1.5. Anti-HIV activities of fatty acyl ester derivatives of AZT and FLT 

compound Code 
CTS" VBl(IIIB)c EC(50) VBI(BaL)d CTC° EC(50) 

EC(50)b (µM) (µM) EC(50) (µM) (µM) 

KP-1 1598 0.9 0.4 12.6 

KP-2 >202 9.3 12.9 >202 

KP-3 >101 7.7 5.2 90.7 

KP-4 >190 14.8 4.6 >190 

KP-5 629 3.1 5 629 

KP-6 611 17.9 4.5 611 

KP-8 197 9.7 6.7 197 

KP-9 >209 6.7 2.1 >209 

KP-10 >209 4.8 6.1 >209 

KP-12 >198 1.8 <0.2 >198 

KP-13 64 11.4 4.4 64 

KP-15 >206 0.2 >206 

KP-16 606 0.7 1.1 6.4 

KP-17 >2000 <0.2 2.3 

1.4 >226 1.5 

1.6 >125 5.4 

1.7 179 180 176 >227 

1.8 205 125 27.6 >216 

AZT 375 10.9 14.2 >375 

FLT 1598 0.8 0.4 >410 
C-lr 64.0 71.7 46.7 48.6 
C-2g >1000 1.6 85 .9 5.1 

DMSO >1000 >1000 >1000 >1000 
a 
Cytotoxicity assay; b50% Effective concentration; cviral entry inhibition assay (lymphocytotropic 

strain); dViral entry inhibition assay (monocytotropic strain); °Cell- to- cell transmission assay (IIIB); 

rVirucidal control; gViral-entry inhibition control. 

Table 1.6 displays the anti-HIV activity (in µg/mL) of FLT and AZT, their 

equimolar mixtures with fatty acids, and their corresponding ester conjugates. It was 

observed that the 5'-0-myristoyl ester conjugate of FLT (KP-16) was more consistent 
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in displaying antiviral activity against cell-associated virus compared to FLT, AZT, 

and physical mixtures of FLT or AZT with fatty acids (50:50 in equimolar ratio; 1.9-

1.11). All three physical mixtures, 1.9 (myristic acid and AZT (50:50)), 1.10 (myristic 

acid and FLT (50:50)), and 1.11 (12-bromododecanoic acid and AZT (50:50)), 

showed lower inhibitory potency against cell-associated HIV compared to KP-1 and 

KP-17. Compound 1.10 exhibited higher potency than that of FLT in cell-associated 

virus, but not as much as KP-1 and KP-17, suggesting the conjugation is required for 

efficient inhibition of cell-associated virus. Compound 1.11 was about 2-fold weaker 

inhibitor than the corresponding conjugate KP-4 (5'-0-(12-bromododeconyol)AZT) 

against IIIB and Bal strains. The comparative studies of physical mixtures with the 

corresponding ester conjugate indicated that the esterification is important for the 

inhibitor activity, especially against cell-associated virus. 

In general, these data indicate that the nature of a substituent(s) on the fatty 

acid chain and the presence of fluorine or azide at 3'-position are determinants of anti­

HIV activity. The decreased activities observed for certain analogs may be due to 

slower regeneration of the parent nucleoside or slower uptake of the fatty acyl 

derivative. The ability of fatty acyl derivatives of FLT, such as KP-1 and KP-17, to 

control cell to cell transmission of virus whereas FLT is not active at all, could be due 

to their higher cellular uptake compared to FLT in infected cells and enhanced 

delivery of FLT in infected cells. Additionally, KP-1 and KP-17 are also releasing 

myristic acid analogs intracelularly that can inhibit the post-translation modification of 
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viral proteins, such as protein myristoylation, and eventually blocking the release of 

new virus for infecting other cells. 

Table 1.6. Comparison of anti-HIV activities of fatty acyl derivatives of AZT and 
FLT with physical mixtures of AZT or FLT + fatty acids 

CTS8 VBI(IIIB}° VBI(BaL)a CTC° 
Compound Chemical Name EC(SO)b EC(SO) EC(SO) EC(SO) 

Code (µg/mL) (µg/mL) (µg/mL) (µg/mL) 

AZT AZT > 100 2.9 3.8 >100 

FLT FLT >100 0.2 0.1 > 100 

KP-1 
5'-0-(12-

746 .7 0.4 0.2 5.9 
azidododecanoyl)FL T 

KP-17 
5'-0-(12- > 1000 0.5 <0.1 1.1 

thioethyldodecanoyl)FL T 

KP-5 5 '-0-(Myristoyl)AZT > 100 1.5 2.4 > 100 

1.9 
Myristic acid + AZT 

> 100 0.7 22.9 > 100 
(50:50) 

KP-16 5'-0-(Myristoyl)FLT > 100 0.3 0.5 2.9 

1.10 
Myristic acid+ FLT 

> JOO < 0.1 0.4 15.6 
(50:50) 

KP-4 
5'-0-(12- > 100 

Bromododecanoyl_ AZT 
7.8 2.4 > 100 

1.11 
12-bromododecanoic acid 

> 100 19 4.8 > 100 
+ AZT (50:50) 

a 
Cytotoxicity assay; b50% Effective concentration; 0Viral entry inhibition assay (lymphocytotropic 

strain); dViral entry inhibition assay (monocytotropic strain); •cell- to- cell transmission assay (IIIB). 

1.4.4. Anti-HIV Activities Against MDR Isolates 

KP-1 , KP-2, KP-16, and KP-17 were further tested against RS and multidrug 

resistant (MDR) clinical isolates. Results indicated that several FLT derivatives 
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exhibited antiviral activity against HIV -1, lab-adapted, clinical isolates, and resistant 

virus. For example, FLT derivatives (KP-1, KP-16, and KP-17) were more potent 

inhibitors of HIV replication than AZT and AZT derivatives under the conditions 

employed in the assays. While AZT and KP-2 showed a drop in activity against MDR 

virus (>10 fold), FLT, KP-1, KP-16 and KP-17 showed similar potencies against RS 

and MDR isolates (Table 1.7). KP-1 was at least 100-fold more potent against MDR 

virus when compared to that of AZT. KP-1, KP-16 and KP-17 were found to be safe 

compounds for cell viability studies as their toxic concentration limits were >40. AZT 

and FLT on the other hand displayed toxicity even at half the concentration. KP-2 not 

only showed less activity but also demonstrated high toxicity towards the cells at very 

low concentration. The impact of the compounds was further studied by looking at 

their antiviral index which is the ratio of TC5o/IC5o. KP-1, KP-16 and KP-17 had >4 

times better Also values than FLT and >30 times effective values than AZT. 

1.4.5. Cytotoxicity and Proinflammatory Effects 

Compounds cytotoxicity was evaluated using human vaginal cells (VK-2). 

Contrary to N-9 (used as positive control), at 1 mg/mL, highest concentration tested, 

KP-1, KP-16, and KP-17 did not show significant cytotoxic effects during a 6 h 

incubation at multiple concentrations (Figure 1.5). Furthermore, although FLT is 

considerably more cytotoxic than AZT toward uninfected lymphocytes, 5'-fatty acyl 

derivatives of FLT did not exhibit higher toxicity in epithelial cell and vaginal cell 

cytotoxicity assays (Figure 1.5). All analogs of FLT demonstrated lower toxicity than 

FLT probably due to a sustained release of FLT upon the hydrolysis of the conjugates. 
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Table 1.7. Anti-HIV evaluation of FLT Derivatives, KP-1, KP-2, KP-16, and KP-17, 

in PBMC assay 

compound 
Solvent Type of Virus Endpoint IC50 (µg/ml) 1 Alsoc 

code 

RS RT 
0.0064 >42.8 

>6700 
KP-I DMSO 

MDR RT 
0.0064 >42.8 

>74Sl 

RS RT 
0.060S > JO.I >163 

KP-2 medium 
MDR RT 

l.8S76 > IO. I >S.46 

RS RT 
0.0066 >44.0 

>7044 
KP-16 DMSO 

MDR RT 
0.0044 >44 .0 

>8669 

RS RT 
0.0041 >41.1 

>8649 
KP-17 DMSO 

MDR RT 
0.00411 >41 .1 

>8370 

RS RT 
AZT 

0.0749 > 18.7 >207 

MDR RT 
l.23S9 > 18.7 >lS.2 

RS RT 
0.0040 >20.S >48S 

FLT DMSO 
MDR RT 

0.0123 >20.S >l,4S7 

"IC50 = The minimum drug concentration that inhibits HIV-induced cytopathic effect by SO%, 

calculated by using a regression analysis program for semilog curve fitting; bTC50 = The minimum drug 

concentration that reduces cell viability by SO%; 0 AI = Abbreviation for Antiviral Index. A 

measurement of the potential activity of drug, calculated by dividing the TC50 by the IC50; RS = 

92TH014; MDR = Multidrug resistant virus 7324-1. 

Furthermore, unlike N-9, KP-1, KP-16, and, KP-17 did not induce the release 

ofIL-la, a powerful proinflammatory cytokine (Figures 1.6 and 1.7). 
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Figure 1.5. Dose-response curves of vaginal cytotoxicity in VK-2 cells (MTS assay) 
for KP-1, KP-16, KP-17, AZT, and N-9 after 6 h incubation 
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Figure 1.6. Proinflammatory cytokine (IL-1 a) production in VK-2 Cells (ELISA) after 
a 6 h incubation in the presence ofKP-1, KP-16, KP-17, AZT, and N-9. 
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Figure 1.7. Summary of AUC Data for proinflammatory cytokine (IL-la) production 

in VK-2 cells after a 6 h incubation in the presence of KP-1, KP-16, KP-17, AZT, and 

N-9. 

KP-2 showed significantly less cytotoxicity and proinflammatory potential 

than N-9 (Figure 1.8), while displaying potent anti-HIV activity. The percentage of the 

vaginal cell that could survive at the concentration of 50 and 100 µg/mL of KP-2 was 

86 and 73% respectively, whereas for N-9, the values were below 4% suggesting that 

KP-2 is much safer in comparison to N-9 even at higher concentrations. It was found 

that N-9 was producing very high concentration of proinflammatory cytokines such as 

IL-la and IL-6 in comparison to KP-2 (Figure 1.9). Observed cytotoxicity from N-9 

(Figure 1.8) could be correlated with the generation of higher levels of cytokines by 

N-9. On the other hand, KP-2 did not show cytotoxicity and were not generating high 

amount of cytokines. Similar assays were performed with other compounds in two 
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different sets and the cytokines generation for all the compounds except KP-12 was 

nearly similar to that ofKP-2 (Figure 1.10). 

100 

.c 
== 80 .Q 
~ .... ... 
~ 60 
CJ .... 
= 40 ~ 
CJ 
i.. 
~ 

~ 20 

0 
3.125 6.25 12.5 25 

Concentration (ug/rnl) 

Figure 1.8. In vitro assay for vaginal cytotoxicity 
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Figure 1.10. Summary of AUC Data for proinflammatory cytokine (IL-la, IL-6 and 

IL-8) production after 6 h incubation. (A) Compounds KP-2, KP-4, KP-5, KP-6, KP-

12, KP-13 , KP-16, KP-17. (B) Compounds KP-1, KP-15, KP-16, and AZT. 
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t.4.6. Spermicidal Activity. 

The spermicidal activities of several fatty acids have been previously reported 

(Brown-Woodman et al., 1985; Jianzhong et al., 1987). None of these derivatives 

showed significant spermicidal activity (Figure 1.11). In a dose-response study to 

evaluate spermicidal activity, compounds KP-1, KP-16, and KP-17 did not show 

significant sperm immobilizing or spermicidal activity, even at their maximum 

concentrations (1 mg/mL). KP-7, one of the FLT analogs, displayed sperm­

immobilizing activity, although it was comparatively weak (Table 1.8). 

Table 1.8. Spermicidal activity of submitted analogs using modified Sander-

Cramer assay. 

Compound Highest Spermicidal 

Code Dilution (1/Xt M.E.C. (mg/ml)b 

KP-1 3.2 ± 0.4 3.5±0.5 

KP-3 2.4 ± 0.4 4.5±0.4 

KP-7 12.8 ± 4.3 1.1±0.2 

KP-14 8.8 ± 1.8 1.4±0.3 

N-9 227.2 ± 104.2 0.227±0.101 

DMSO 3.6 ± 0.4 N.A.c 

aSolvent = DMSO, initial concentration = 10 mg/rnL. Values are expressed as means± 

SE; bMinimum Effective Concentration; cNot assayed. 
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t.4.7· Cellular Uptake Study 

Cellular uptake profile of 5'-0-fatty acyl derivatives were investigated in 

Parison with FLT. FLT attached to FAM through P-alanine (1.5) was used as a com 

control FLT analog. FLT attached to FAM through 12-aminododecanoic acid (1.6) was 

used as an analog of 3'-fluoro-2',3'-dideoxy-5'-0-(12-azidododecanoyl)thymidine (KP-1) 

and other fatty acid ester analogues of FLT. 3'-Fluoro-2',3'-dideoxy-5'-0-(12-

aminododecanoyl)thymidine (1.4) showed anti-HIV activities comparable to other fatty 

acyl derivatives of FLT. Fluorescein-labeled fatty acyl ester derivative of FLT (1.6) 

showed slightly lower anti-HIV activity when compared with unsubstituted 12-

aminododecanoyl derivative (1.4). 

The human T lymphoblastoid cells (CCRF-CEM, ATCC No. CCL-119) were 

used for the study and were grown to the 70% confluency in the culture media. The cells 

were incubated with the fluorescein-substituted conjugates (1.5 and 1.6) in different time 

periods, concentrations, and in the presence or absence of trypsin (Figures 1.12-1.14). 

DMSO and FAM were used as control for the study. The cells were analyzed by flow 

cytometry (F ACSCalibur: Becton Dickinson) using FITC channel and Cell Quest 

software. The data presented are based on the mean fluorescence signal for 10000 cells 

collected. All the assays were carried out in triplicate. 

First, cells were incubated with 10 µM of the compounds in different time periods 

(0.5 h, 1 h, 2 h, 4 h and 8 h, Figure 1.12). Compound 1.6 exhibited 10-15 fold higher 

cellular uptake than that of 1.5 and FAM alone. The results clearly indicate that presence 
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of Jong chain enhances the cellular uptake of FLT, by increasing lipophilicity. The 

continuous incubation of cells with compounds up to 8 h did not show significant 

difference in the cellular uptake, suggesting that most of the fatty acyl ester derivative is 

absorbed into cells within first 30 minutes incubation and the cellular uptake was not time 

dependent. 
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Figure 1.12. Cellular uptake studies for 5(6)-carboxyfluorescein derivatives of FLT (1.5 
and 1.6) along with FAM and DMSO as controls at different time intervals. 

Cells were then incubated with different concentrations (5, 10, 20, 40 and 100 

µM) of carboxyfluorescein derivative of FLT, 1.6 for 1 h (Figure 1.13). The data 

suggested that the cellular uptake was concentration dependent. 
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Figure 1.13. Cellular uptake studies for 5(6)-carboxyfluorescein derivative of FLT (1.6) 
at different concentrations. 

To confirm that the enhanced uptake of 5(6)-carboxyfluorescein derivative of 

FLT, 1.6, is not due to the absorption on the cell membrane surface, cells were incubated 

with 10 µM of DMSO, FAM, 1.5, and 1.6 for 1 h and then treated with trypsin for 5 min 

to wash the adsorbed molecules (if any) from the cell membrane. The cellular uptake 

studies after trypsin treatment showed that the cellular uptake of 1.6 was still much 

higher than those of contro 1 compounds, FAM and 1.5 (Figure 1.14 ), suggesting that the 

higher cellular uptake of 1.6 is not due to artificial absorption to the cell membrane. 
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Figure 1.14. Cellular uptake studies for 5(6)-carboxyfluorescein derivatives of FLT (1.5 
and 1.6) along with FAM and DMSO as controls after treatment with trypsin. 

1.4.8. Cell Viability Study 

Cell viability study was performed to analyze the effect of FAM, 1.5, and 1.6 on 

the live cells. CCRF-CEM cells were incubated with 10 µM of the compounds and mixed 

with trypan blue (0. 1 % ) to color the dead cells. The percentage of viability was calculated 

by using Cellometer Auto T.4 (Nexcelom Bioscience). It was observed that at least 80% 

of the cells were viable in presence of the compounds in 24 h incubation period (Figure 

1.15). 
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Figure 1.15. Cell viability assay after 3h and 24 h incubation of 1.5 and 1.6 with CCRF­
CEM cells. DMSO and FAM were used as positive controls. 

1.4.9. Real Time Fluorescence Microscopy in Live CCRF-CEM Cells 

CCRF-CEM cells were incubated with 10 µM of DMSO, FAM, 1.5 and 1.6 for 1 

hand were imaged using light microscope (ZEISS Axioplan 2) equipped with transmitted 

light microscopy with a differential-interference contrast method and an Achroplan 40X 

objective. Cells showed no significant fluorescence when incubated with DMSO, FAM, 

and 1.5 (Figure 1. 16). On the other hand, cells incubated with 1.6 showed fluorescence. 

The results further confirm the higher cellular uptake of 1.6, a fatty acyl derivative of 

FLT, in comparison to 1.5 and FAM alone. In general, these data indicate that the fatty 

acyl derivatives of nucleosides have better cellular uptake than their parent nucleosides. 
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Figure 1.16. Real time fluorescence microscopy in live CCRF-CEM cell line. Control= 
DMSO, FAM = 5(6)-carboxyfluorescein. 
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t,5. Conclusions. 

Several bifunctional 5'-0-fatty acyl derivatives of FLT were designed and 

synthesized as prodrugs of FLT, a nucleoside reverse transcriptase inhibitor, and their 

biological activities were evaluated as anti-HIV agents and microbicides. It was expected 

that after intracellular hydrolysis, the compounds would release two active parent 

analogs, FLT and fatty acid, targeting RT and NMT, respectively, involved in HIV life 

cycle. 

Among all the compounds, KP-1, KP-16, and KP-17 were found to have better 

anti-HIV activity profile when compared with FLT, AZT, and 5'-0-fatty acyl derivatives 

of AZT. KP-1, KP-16, and KP-17 were active against cell-free virus (lymphocytotropic 

and monocytotropic strains). Furthermore-, KP-1, KP-16, and KP-17 showed significantly 

higher activity against cell-associated virus when compared with AZT and FLT. These 

compounds were equally active against R5 and MDR, while AZT was not active against 

multidrug resistant virus. KP-1, KP-16 and KP-17 exhibited >4 and >30 times better 

antiviral index, respectively, than FLT and AZT. The compounds did not show any 

significant cytotoxicity in vaginal cells when compared with N-9 (a commercial 

microbicidal drug) suggesting that the compounds may be safer than N-9 for microbicidal 

applications. The 5'-0-ether derivatives of FLT and AZT (1.7 and 1.8) showed 

significantly less anti-HIV activity than the corresponding 5'-0-fatty acyl ester 

derivatives (KP-16 and KP-5), confirming the hypothesis that the hydrolysis of the 

prodrug to the parent analogs was critical for generation of anti-HIV activity. 

The presence of long chain fatty acid at 5'-position enhanced the lipophilicity of 

FLT and the cellular uptake as was shown by cellular uptake studies of 5'-
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carboxyfluroscein derivatives of FLT containing short chain (1.5) and long chain (1.6) 

alkyl ester groups. F ACS experiments showed that 1.6 had at least 8-fold higher cellular 

uptake in CCRF-CEM cells than 1.5. Fluorescence microscopy of the cells incubated 

with these compounds further confirmed the F ACS results as cells incubated with 1.6 

showed significantly higher fluorescence when compared with cells incubated with FAM 

and 1.5. These results suggest that the increased inhibition by KP-1, KP-16, and KP-17 

may be due to a higher intracellular level of active nucleoside achieved by the conjugate. 

The high activity of these compounds was possibly due to their increased rate of uptake 

and intracellular hydrolysis yielding two antiviral agents with different targets, FLT and 

fatty acid analog. 

KP-1 and KP-17 are currently undergoing further preclinical studies, such as 

ADMET, animal toxicity, lactobacillus inhibition, and preformulation studies. These 

compounds may be used as topical microbicidal applications (such as vaginal insert or 

jellies) to prevent HIV infection during the sexual activity. These data provided insights 

for more rational design of additional potent and safe anti-HIV microbicides using the 

FLT as the parent nucleoside. When taken together, the results will have significant 

implications for the design of more potent and innovative anti-HIV agents. 
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z.t. Abstract 

A number of fatty acyl derivatives of 2',3'-didehydro-2',3'-dideoxythymidine 

(Stavudine, d4 T), (-)-5-fluoro-2' ,3 '-dideoxy-3 '-thiacytidine (Emtricitabine, FTC), and (-)-

2',3 '-dideoxy-3 '-thiacytidine (Lamivudine, 3TC) were synthesized. Anti-HIV activities of 

the compounds were evaluated and compared against cell-free and cell-associated virus. 

Fatty acyl derivatives of FTC (ECso = 0.04-0.2 µM) were the most potent compounds 

when compared with the corresponding fatty acyl derivatives of AZT, FLT, d4T, and 

3TC derivatives (ECso = 0.2-12.9 µM). Among the compounds, 5'-0-myristoyl 

derivative of FTC (2.31) was found to be the most potent compound with minimal 

cellular toxicity. Compound 2.31 exhibited 10-fold higher anti-HIV activity against cell­

free virus (EC50 = 0.07 µM) versus to FTC (ECso = 0.7 µM). The anti-HIV activity of 

2.31 against cell-associated virus (EC50 = 3.7 µM) was 24 times higher when compared 

with FTC (EC50 = 88.6 µM). Furthermore, 5'-0-12-azidododecanoyl derivative of FTC 

(2.32, EC50 = 0.2 µM) showed 4 and 10 times higher anti-HIV activities than FTC against 

cell-free and cell-associated virus, respectively. Among 3TC derivative, 5'-0-myristoyl 

(2.16, EC50 >0.2 µM) and 5'-0-12-azidododecanoyl (2.17, EC50 = 0.7 µM) derivatives of 

3TC exhibited at least 57- and 16-fold higher anti-HIV activities than 3TC (2.1, ECso = 

11.3 µM) against cell-free virus, respectively. Cellular uptake studies were conducted on 

CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of 3TC attached through 

P-alanine (2.38) or 12-aminododecanoic acid (2.39) as linkers. Fluorescein-substituted 

analog of 3TC with long chain length (2.39) showed3-6 fold higher cellular uptake 

profile than analog with short chain length (2.39) and 5(6)-carboxyfluorescein. The data 
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revealed that the attachment of fatty acid enhances the cellular uptake of the nucleoside 

conjugate. 

2.2. Introduction 

3TC, FTC, and d4T are the nucleoside reverse transcriptase (RT) inhibitors that 

inhibit human immunodeficiency virus-1 (HIV-1) replication. These drugs are 

commercially used in combination with two or more other anti-HIV drugs in Highly 

Active Antiretroviral Therapy (HAART) program. For example, 3TC and FTC are used 

in combination with Abacavir and Tenofovir, respectively, in the treatment of HIV 

infection (Masho et al., 2007). These drugs are known to have higher therapeutic index 

than AZT and FLT and show also anti-HIV activity against AZT resistant virus (Mansuri 

et al., 1990). 

Lamivudine is a (-)-2',3'-dideoxy-3'-thiacytidine analog that is used in the 

treatment of both HIV-1 and hepatitis disease. Two isomers[(-) and(+)] of 2',3'-dideoxy-

3'-thiacytidine show different biological profiles against HIV. (-)-Isomer is six-fold 

higher activity against HIV when compared with that of (+)-isomer and is nearly two 

times less cytotoxic, therefore it is used in clinic (Skalski et al., 1993). Although 

Larnivudine has good activity against wild type HIV, a single point mutation at 184 

residue results in 3TC-resistant mutant virus (M184V/I) (Mulder et al., 2008, Sarafianos 

et al., 1999, Diallo et al., 2003 ). Several studies have provided different reasons for 

resistance development, such as cytidine deamination and the generation of steric 
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hindrance at 184 amino acid residues. Similar to the HIV, mutation at Met5 52 with Val 

and Ile (M552V/I) results in 3TC and FTC resistant HBV strains (Das et al., 2001). 

Stavudine is a thymidine nucleoside analog and was approved in 1994 for 

treatment against HIV-1. d4 T is well absorbed orally and is metabolized intracellularly to 

d4T 5'-triphosphate. d4T shows synergic effect with the other anti-HIV drugs and is 

generally used in triple therapy. Application of d4T as anti-HIV agent faces major 

challenges in the form of drug resistance. Different point mutations in RT, such as V75T 

and K65R, reduces d4T sensitivity against virus (Gracia-Lerma et al., 2003; Hurst and 

Noble, 1999). 

FTC, a 5-fluoro derivative of 3TC, is 10-17 times more potent than 3TC. FTC and 

3TC share common mechanism of action and drug resistance patterns (Masho et al., 

2007). It is suggested that use of FTC with Tenofovir results in a higher barrier to drug 

resistance (Gallant et al., 2006; Pozniak et al., 2006). 

N-Myristoyl transferase (NMT) enzyme is involved in catalyzing the 

myristoylation of several proteins in HIV life cycle (e.g., capsid protein pl 7, Prl60gag-pol, 

Pr55gag, p27ner) . At N-terminal glycine, viral proteins (gag and nef) are covalently 

attached to myristic acid in the presence of NMT. Myristic acid attachment makes the 

proteins more hydrophobic, which improves protein-protein and protein-membrane 

interactions (Farazi et al., 2001). For example, after the N-myristoylation, pl 7 protein 

localizes itself towards the cell membrane, where new virus is produced (Wu et al., 2004) 
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The replication of HIV-I can be inhibited by heteroatom-containing analogs of 

myristic acid without accompanying cellular toxicity (Bryant et al., I993, Takamune et 

al., 2002). It has been previously reported that several fatty acids, such as 2-

methoxydodecanoic acid, 4-oxatetradecanoic acid, and I 2-thioethyldodecanoic acid, 

reduce HIV-I replication in acutely infected T-lymphocytes. For example, 12-

thioethyldodecanoic acid was moderately active (ECso = 9.4 µM) against HIV-infected 

T4 lymphocytes (Parang et al., 1997). 

It is hypothesized that the attachment of nucleoside analogs to the long chain 

myristic acid analogs enhances their lipophilicity and thus their cellular uptake. Once the 

ester conjugate enters the cells; it gets hydrolyzed by esterases; and generates two active 

molecules, nucleoside analog and fatty acid targeting RT and NMT enzymes, 

respectively. 

We previously reported the synthesis and evaluation of fatty acyl derivatives of 

AZT and FLT (chapter I). Herein, we report the synthesis of fatty acyl derivatives of 

3TC, FTC, and d4T, their anti-HIV activities, spermicidal activity, and cellular uptake 

profiles. Three fatty acids, myristic acid, I2-azidododecanoic acid, and I2-

thioethyldodecanoic acid, were conjugated with the nucleosides. The selection of the 

fatty acids was based on the anti-HIV activities of the corresponding fatty acyl 

derivatives of FLT (chapter I). The conjugation of fatty acids to the selected nucleosides 

may result in development of anti-HIV agents having enhanced lipophilicity, longer 
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duration of action by sustained intracellular release of active substrates at adequate 

concentrations, and higher uptake into infected cells. 

2.3. Materials and Methods 

2.3.1. Materials. 

Lamivudine (3TC) and Emtricitabin (FTC) were purchased from Euro Asia Tran 

Continental (Bombay, India). Stavudine (d4T) was purchased from Kemprotec 

(Middlesbrough, U.K.). 12-Bromododecanoic acid was purchased from Sigma Aldrich 

Chemical Co. 5(6)-Carboxyfluorescein (FAM) was purchased from Novabiochem. All 

the other reagents including solvents were purchased from Fisher scientific. 

The products were purified on a Phenomenex®Gemini 10 µm ODS reversed-

phase column (2.1 x 25 cm) with Hitachi HPLC system using a gradient system at 

constant flow rate of 17 ml/min (Table 2.1 ). 

Table 2.1. HPLC method used for purification of the final compounds. 

Time Water A€etonitrile Flow rate 
(min) Concentration Concentration (mL/min) 

A(%) B (%) 
0.00 100.0 0.0 1.0 

1.0 100.0 0.0 17.0 

45.0 0.0 100.0 17.0 

55.0 0.0 100.0 17.0 

59.0 100.0 0.0 17.0 

60.0 100.0 0.0 1.0 
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The purity of the compounds was confirmed by using analytical Hitachi analytical 

HPLC system on a C18 column (Grace Allsphere ODS 2-3 µ, 150 X 4.6 mm) using a 

gradient system (water:acetonitrile 30:70 v/v) at constant flow rate of 1 ml/min with a 

UV detection at 265 nm. The chemical structures of final products were characterized by 

nuclear magnetic resonance spectrometry (1H NMR and 13C NMR) determined on a 

Bruker NMR spectrometer ( 400 MHz) and confirmed by a high-resolution PE 

Biosystems Mariner API time-of-flight electrospray mass spectrometer. Chemical shifts 

are reported in parts per millions (ppm). For cellular uptake studies, cells were analyzed 

by flow cytometry (F ACSCalibur: Becton Dickinson) using FITC channel and Cell Quest 

software. Cell~viability studies were conducted using Cellometer Auto T.4 (Nexcelom 

Biosciences). The real time microscopy in live CCRF-CEM cell line with or with 

compounds were imaged using ZEISS Axioplan 2 light microscope equipped with 

transmitted light microscopy with a differential-interference contrast method and an 

Achroplan 40X objective. 

2.3.2. Chemistry 

(-)-N4,5'-(Ditetradecanoyl)-2' ,3'-dideoxy-3'-thiacytidine (2.2) and (-)-N4,S'-di(l2-

azidododecanoyl)-2' ,3' -dideoxy-3' -thiacytidine (2.3) 

In general, a reaction mixture consisting of the appropriate fatty acid (1.0 mmol), 

oxalyl chloride (100 µL, 1.2 mmol), and anhydrous benzene (18 mL) was stirred at room 

temperature (25 °C) for 1 h. The yellow solution thus obtained was evaporated to dryness 

under reduced pressure to prepare acid chloride. Lamivudine (2.1, 100 mg, 0.44 mmol) 

and 4-dimethylaminopyridine (DMAP, 160 mg, 1.3 mmol) were dissolved in dry benzene 
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(20 mL). The freshly prepared acid chloride (1.1 mmol) from the reaction of fatty acid 

with oxalyl chloride was added to the mixture. The reaction mixture was refluxed at 100 

oc for 4 h. After the completion of reaction, the reaction mixture was cooled down to 

room temperature and neutralized with 5% sodium bicarbonate solution. Benzene layer 

was separated and aqueous layer was extracted with dichloromethane (3 x 100 mL). The 

Organic layer was separated and mixed with the benzene layer and concentrated at 

reduced pressure. The residue was purified with silica gel column chromatography using 

dichloromethane and methanol (0-1 %) as eluents. 

(-)-N4,5'-(Ditetradecanoyl)-2' ,3'-dideoxy-3'-thiacytidine (2.2). Yield (155 mg, 53%); 

1H NMR (400 MHz, CDCh, o ppm): 8.90-9.40 (br s, lH, NH), 8.16 (d, J = 7.5 Hz, lH, 

H-6), 7.48 (d, J = 7.5 Hz, lH, H-5), 6.34 (dd, J = 3.2 and 5.1 Hz lH, H-1'), 5.41 (t, J = 

3.8 Hz, lH, H-4'), 4.65 (dd, J = 12.5 and 4.8 Hz, lH, H-5"), 4.45 (dd, J = 12.5, 3.0 Hz, 

lH, H-5'), 3.64 (dd, J = 5.1, 12.6 Hz, lH, H-2"), 3.29 (dd, J = 3.2, 12.6 Hz, lH, H-2'), 

2.47 (t, J = 7.6 Hz, 2H, CH2CO), 2.40 (t, J = 7.6 Hz, 2H, CH2CO), 1.60-1.75 (m, 4H, 

CH2CH2CO), 1.20-1.40 (br m, 40H, methylene protons), 0.89 (t, J = 6.7 Hz, 6H, CH3); 

13
C NMR (DMSO-d6, 100 MHz, o ppm): 175.06 (CONH), 173.39 (COO), 163.21 (C-4), 

154.89 (C-2 C=O), 145.87 (C-6), 95.59 (C-5), 88.70 (C-1 '), 87.75 (C-4'), 62.49 (C-5'), 

38.31 (C-2'), 37.00 (CH2CONH), 34.27, 32.00, 29.73, 29.63, 29.47, 29.43, 29.26, 29.16, 

25.14, 22.77 (methylene carbons), 14.48 (CH3). HR-MS (ESI-TOF) (m/z): C36H63N30sS, 

calcd, 649.9675 ; found, 650.1885 [M +Ht. 
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(-)-N4,5'-Di(12-azidododecanoyl)-2',3'-dideoxy-3'-thiacytidine (2.3). Yield (170 mg, 

55%); 1H NMR (400 MHz, CDCh, o ppm): 8.90-9.12 (br s, lH, NH), 8.18 (d, J = 7.2 Hz, 

IH, H-6), 7.49 (d, J = 7.2 Hz, lH, H-5), 6.36 (m, lH, H-1'), 5.43 (dd, J = 4.9, 3.0 Hz, 

lH, H-4'), 4.67 (dd, J = 12.5 and 4.9 Hz, lH, H-5"), 4.47 (dd, J = 12.5 and 3.0 Hz, lH, 

H-5'), 3.64 (dd, J = 12.6 and 5.4 Hz, lH, H-2"), 3.20-3 .34 (m, 5H, H-2', CH2N3), 2.49 (t, 

J = 7.2 Hz, 2H, CH2CO), 2.42 (t, J = 7.2 Hz, 2H, CH2CO), 1.55-1.79 (m, 8H, -

cH2CH2CO, CH2CH2N3), 1.20-1.45 (br m, 28H, methylene protons); 13C NMR (CDC13, 

100 MHz, o ppm): 179.51 (CONH), 174.52 (COO), 163.20 (C-4), 146.10 (C-6), 96.50 

(C-5), 88.60 (C-1'), 83 .84 (C-4'), 64.82 (C-5'), 63.06, 51.87 (CH2N3), 39.43 (C-2'), 37.96 

(Cl-hCONH), 34.80 (CH2COO), 34.47, 29.84, 29.78, 29.63, 29.53, 29.47, 29.23, 29.20, 

27.10, 25.14 (methylene carbons) . HR-MS (ESI-TOF) (m/z): C32H53N905S, calcd, 

675.8855 ; found, 676.6085 [M +Ht. 

(-)-5'-0-(t-Butyldimethylsilyl)-2',3'-dideoxy-3'-thiacytidine (2.4). Lamivudine (2.1, 

1.09 mmol, 250 mg), tert-butyldimethylsilyl chloride (500 mg, 3.27 mmol), and 

imidazole (230 mg, 3.27 mmol) were dissolved in dry DMF (10 mL) and the reaction 

mixture was stirred for 18 h at room temperature. The solvent was concentrated at 

reduced pressure and the residue was purified with silica gel column chromatography 

using dichloromethane and methanol (0-5%) as eluents to yield 2.4 (350 mg, 95%); 1H 

NMR (400 MHz, CDCh, 8 ppm): 8.21 (d, J = 7.6 Hz, lH, H-6), 6.32 (dd, J = 5.2 and 2.8 

Hz, lH, H-1'), 6.02 (d, J = 7.6 Hz, lH, H-5), 5.26 (t, J = 3.0 Hz, lH, H-4'), 4.18 (dd, J = 

11.8 and 3.0 Hz, lH, H-5"), 3.96 (dd, J = 11.8 and 3.0 Hz, lH, H-5'), 3.54 (dd, J = 12.5 

and 5.2 Hz, lH, H-2"), 3.19 (dd, J = 12.5 and 2.8 Hz, lH, H-2'), 0.95 (s, 9H, (CH3)3C), 
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0.15 (s, 6H, CH3Si); HR-MS (ESI-TOF) (m/z): C14H2sN303SSi, calcd, 343.1386; found, 

344.3933 [M +Ht, 686.4590 [2M +Ht. 

(-)-5'-0-(t-Butyldimethylsilyl)-N4( tetradecanoyl)-2' ,3' -dideoxy-3 '-thiacytidine (2.5), 

(-)-5'-0-(t-Butyldimethylsilyl)-N4(l2-azidododecanoyl)-2' ,3' -dideoxy-3 '-thiacytidine 

(2.6), and (-)-5'-0-(t-Butyldimethylsilyl)-N4(l2-thioethyldodecanoyl)-2' ,3'-dideoxy-

3'-thiacytidine (2.7). Compound 2.4 (140 mg, 0.4 mmol) and DMAP (70 mg, 0.6 mmol) 

were dissolved in dry benzene (10 mL). The corresponding acid chloride (0.48 mmol) 

(prepared as described above) was added dropwise and the reaction mixture was refluxed 

for 4 h at 100 °C. The reaction mixture was cooled down to room temperature and 

neutralized with saturated sodium bicarbonate solution (100 mL). The benzene layer was 

separated and aqueous layer was extracted with dichloromethane (3 x 100 mL). The 

organic layer was separated and mixed with benzene layer and concentrated at reduced 

pressure. The residue was purified with silica gel column chromatography using 

dichloromethane and methanol (0-1 % ) as eluents to afford 2.5-2. 7. 

2.5. Yield (110 mg, 50%); 1H NMR (400 MHz, CD30D, o ppm): 8.12 (d, J = 7.5 Hz, lH, 

H-6), 6.24 (dd, J = 5.3, 3.5 Hz, lH, H-1'), 5.81 (d, J = 7.5 Hz, lH, H-5), 5.26 (t, J = 3.3 

Hz, lH, H-4'), 4.09 (dd, J = 11.7 and 3.3 Hz, lH, H-5"), 3.96 (dd, J = 11.7 and 3.3 Hz, 

lH, H-5'), 3.49 (dd, J = 12.2 and 5.3 Hz, lH, H-2"), 3.11 (dd, J = 12.2 and 3.5 Hz, lH, 

H-2'), 2.24 (t, J = 7.4 Hz, 2H, CH2CO), 1.56 (t, J = 7.1 Hz, 2H, CH2CH2CO), 1.20-1.35 

(hr m, 20H, methylene protons), 0.91 (s, 9H, (CH3)3C), 0.86 (t, J = 6.8 Hz, 3H, CH3), 
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0.11 (s, 6H, CH3Si); HR-MS (ESI-TOF) (m/z): C2sH51N30 4SSi, calcd, 553.8727; found, 

554.1020 [M +Ht. 

2.6. Yield (110 mg, 50%). 1H NMR (400 MHz, CDCl3, 8 ppm): 8.40-8.69 (br s, 2H, NH 

and H-6), 7.44 (d, J = 7.3 Hz, lH, H-5), 6.37-6.41 (m, lH, H-1'), 5.33 (t, J = 2.5 Hz, lH, 

H-4'), 4.27 (dd, J = 11.9 and 2.5 Hz, lH, H-5"), 4.01 (dd, J = 11.9 and 2.5 Hz, lH, H-5'), 

3.64 (dd, J = 12.7 and 5.2 Hz, lH, H-2"), 3.27-3.30 (m, 3H, H-2', CH2N3), 2.47 (s, 2H, 

CH2CO), 1.60-1.82 (m, 4H, CH2CH2CO, CH2CH2N3), 1.28-1.45 (br m, 14H, methylene 

protons), 0.99 (s, 9H, (CH3)3C), 0.18 (s, 6H, CH3Si); HR-MS (ESI-TOF) (m/z): 

C26H46N604SSi, calcd, 556.8317; found, 567.0023 [M +Ht. 

2.7. Yield (110 mg, 50 %); 1H NMR (400 MHz, CDCh, 8 ppm) 9.29-9.41 (br s, lH, NH), 

8.60 (d, J = 7.5, lH, H-6), 7.46 (d, J = 7.5, lH, H-5), 6.37 (dd, J = 5.2 and 2.3 Hz, lH, 

H-1'), 5.32 (t, J = 2.2, lH, H-4'), 4.68 (dd, J = 11.9 and 2.2 Hz, lH, H-5"), 4.00 (dd, J = 

11.9 and 2.2 Hz, lH, H-5'), 3.63 (dd, J = 12.7, 5.2, lH, H-2"), 3.29 (d, J = 12.7, lH, H-

2'), 2.53-2.62 (m, 4H, CH2SCH2), 2.39 (t, J = 7.5, 2H, CH2COO), 1.52-1.83 (m, 4H, 

CH2CH2COO and SCH2CH2), 1.21-1.50 (br m, 17H, methylene protons, CH3CH2S), 0.99 

(s, 9H, (CH3)3C) , 0.18 (s, 6H, CH3Si); HR-MS (ESI-TOF) (m/z): C2sHs1N304S2Si, calcd, 

585.3077; found, 585.8926 [M +Ht, 607.8040 [M +Nat. 

{-)-N4(Tetradecanoyl)-2',3'-dideoxy-3'-thiacytidine (2.8), 

azidododecanoyl)-2' ,3' -dideoxy-3 '-thiacytidine (2.9), and (-)-N4(12-

tbioetbyldodecanoyl)-2' ,3' -dideoxy-3' -thiacytidine (2.10). Tetrabutylammonium 
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fluoride (1.5 mL, lM) was added to 2.5-2.7 (150 mg) and the reaction mixture was stirred 

at room temperature for 3 h. Solvent was concentrated at reduced pressure and the 

residue was purified with silica gel column chromatography using dichloromethane and 

methanol (0-1 %) as eluents to afford 2.8-2.10. 

2.8. Yield ( 55 mg, 65%); 1H NMR (400 MHz, DMSO-d6, 8 ppm): 10.85 (s, lH, NH), 

8.38 (d, J = 7.5 Hz, lH, H-6), 7.23 (d, J = 7.5 Hz, lH, H-5), 6.21 (dd, J = 5.2 and 3.2 

Hz, lH, H-1'), 5.26 (t, J = 4.1 Hz, lH, H-4'), 3.82-3.85 (br s, 2H, H-5" and H-5'), 3.56 

(dd, J = 12.3 and 5.2 Hz, lH, H-2"), 3.20 (dd, J = 12.3 and 3.2 Hz, lH, H-2'), 2.38 (t, J = 

7.3 Hz, 2H, CH2CO), 1.53 (t, J = 6.5 Hz, 2H, CH2CH2CO), 1.15-1.35 (s, 20H, methylene 

protons), 0.89 (t, J = 6.7 Hz, 3H, CH3); 
13C NMR (DMSO-d6, 100 MHz, 8 ppm): 174.80 

(COO), 163.41 (C-4), 155.11 (C-2 C=O), 146.17 (C-6), 95.8 (C-5), 88.90 (C-1'), 87.94 

(C-4'), 62.70 (C-5'), 38.51 (C-2'), 37.16 (CH2CONH), 32.16, 29.92, 29.88, 29.73, 29.57, 

29.30, 25.28, 22.96 (methylene carbons), 14.77 (CH3); HR-MS (ESI-TOF) (m/z): 

C22H31N304S, calcd, 439.6119; found, 440.3352 [M + Ht, 462.2543 [M + Nat, 

878.1789 [2M +Ht, 900.0877 [2M +Nat. 

2.9. Yield (50 mg, 60%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.45-8.47 (br s, 2H, NH, 

H-6), 7.49 (d, J = 7.5 Hz, lH, H-5), 6.38 (dd, J = 5.3 and 3.4 Hz, lH, H-1'), 5.41 (t, J = 

3.2 Hz, lH, H-4'), 4.21 (dd, J = 12.7 and 3.2 Hz, lH, H-5"), 4.01 (dd, J = 12.7 and 3.2 

Hz, lH, H-5'), 3.68 (dd, J = 12.5 and 5.3 Hz, lH, H-2"), 3.27-3.31 (m, 3H, H-2', CH2N3), 

2.48 (t, J = 6.8 Hz, 2H, CH2CO), 1.58-1.68 (m, 4H, CH2CH2CO, CH2CH2N3), 1.25-1.45 

(hr m, 14H, methylene protons); 13C NMR (CDCh, 100 MHz, 8 ppm): 173.65 (COO), 
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!62.40 (C-4), 155.04 (C-2 C=O), 145.47 (C-6), 96.28 (C-5), 88.32 (C-1'), 88.23 (C-4'), 

62.99 (C-5'), 51.67 (CH2N3), 39.18 (C-2'), 38.05 (CH2CONH), 29.61, 29.54, 29.45, 

29.31, 29.19, 29.02, 26.89, 25.03 (methylene carbons); HR-MS (ESI-TOF) (m/z): 

c
20

H32N604S, calcd, 452.5709; found, 453.2421 [M +Ht, 903.9628 [2M + H( 

2.10. Yield (50 mg, 50%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.58 (s, lH, NH), 8.02-

8.07 (br s, lH, H-6), 6.26-6.30 (br s, lH, H-5), 6.13-6.17 (m, lH, H-1'), 5.35 (d, J = 2.8 

Hz, lH, H-4'), 4.59-4.72 (m, lH, H-5"), 4.35-4.45 (m, lH, H-5'), 3.53-3.65 (m, lH, H-

2"), 3.20-3.32 (m, lH, H-2'), 2.45-2.75 (m, 4H, CH2SCH2), 2.33-2.43 (m, 2H, CH2COO), 

1.53-1.70 (m, 4H, SCH2CH2, CH2CH2CO), 1.20-1.40 (br m, 17H, methylene protons, 

CH3CH2S); 13C NMR (CDCh, 100 MHz, 8 ppm): 174.08 (COO), 163.02 (C-4), 155.44 

(C-2 C=O), 145.85 (C-6), 96.73 (C-5), 88.61 (C-1 '), 88.48 (C-4'), 63.14 (C-5'), 39.38 (C-

2'), 38.10 (CH2CONH), 34.83, 32.06, 26.31-30.10, 25.32 (methylene carbons), 15.23 

(CH3); HR-MS (ESI-TOF) (m/z): C22H31N304S2, calcd, 471.6769; found, 472.1656 [M + 

Ht, 941.7961 [2M +Ht. 

(-)-S'-0-(t-Butyldimethylsilyl)-N 4-( 4,4 '-dimethoxytrityl)-2' ,3' -dideoxy-3' -thiacytidine 

(2.11). Compound 2.4 (600 mg, 1.75 mrnol) was dissolved in dry pyridine (10 mL). A 

solution of 4,4'-dimethoxytrityl chloride (DMTr-Cl, 1.4 mg, 4.4 mrnol) in 10 mL pyridine 

was added to the reaction mixture dropwise at O °C. The reaction mixture was stirred for 

30 min. The temperature was raised to room temperature and stirring was continued 

overnight. The reaction mixture was neutralized with saturated sodium bicarbonate 

solution (500 mL) and was extracted with dichloromethane (3 x 200 mL). The organic 
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layer was separated and concentrated in vacuo. The residue was purified with silica gel 

column chromatography using dichloromethane and methanol (0-1 %) as eluents to yield 

2.11 (1.05 g, 90%). 

1H NMR (400 MHz, CDCh, 6 ppm): 7.81 (d, J = 7.7 Hz, lH, H-6), 7.74 (dd, J = 5.7 and 

3.3 Hz, lH, DMTr proton), 7.55 (dd, J = 5.7 and 3.2 Hz, lH, DMTr proton), 7.12-7.33 

(m, 7H, DMTr protons), 6.82-6.88 (m, 4H, DMTr protons), 6.33 (dd, J = 5.2 and 3.0 Hz, 

lH, H-1'), 5.17-5.22 (m, lH, H-4'), 5.03 (d, J = 7.7 Hz, lH, H-5), 4.38 (dd, J = 14.3 and 

7.1 Hz, lH, H-5"), 4.06 (dd, J = 11.8 and 3.1 Hz, lH, H-5'), 3.81 (s, 6H, DMTr-OCH3), 

3.52 (dd, J = 12.2 and 5.2 Hz, lH, H-2"), 3.17 (dd, J = 12.2 and 3.0 Hz, lH, H-2'), 0.80 

(s, 9H, (CH3)3C), 0.06 (s, 6H, CH3Si); HR-MS (ESI-TOF) (m/z): C3sllt3N30 5SSi, calcd, 

645.8835; found, 686.4624 (M+Kt, 1289.3671 (2M+Ht. 

(-)-N4-(4,4'-Dimethoxytrityl)-2',3'-dideoxy-3'-thiacytidine (2.12). Compound 2.11 (1 

g, 1.55 mrnol) was dissolved in tetrabutylarnrnonium fluoride (4.65 ml, 1 M, 4.65 mrnol,) 

and stirred for 3 h. The reaction mixture was concentrated at reduced pressure and the 

residue was purified with silica gel column chromatography using dichloromethane (2% 

triethylarnine) and methanol (0-1 % ) as eluents to yield 2.12 (820 mg, 90% ). 

I 
H NMR (400 MHz, CD30D, 6 ppm): 8.53 (d, J = 7.8 Hz, lH, H-6), 7.32-7.34 (m, 2H, 

DMTr protons), 7.17-7.23 (m, 6H, DMTr protons), 7.11-7.13 (m, lH, DMTr protons), 

6.75-7.78 (m, 4H, DMTr protons), 6.22 (dd, J = 5.3 and 2.5 Hz, lH, H-1'), 6.01 (d, J = 

7.8 Hz, lH, H-5), 5.25 (t, J = 3.2, lH, H-4'), 3.99 (dd, J = 12.8 and 3.2 Hz, lH, H-5"), 

3.84 (dd, J = 12.8 and 3.2 Hz, lH, H-5'), 3.69 (s, 6H, DMTr-OCH3), 3.51 (dd, J = 12.6 

and 5.3 Hz, lH, H-2"), 3.27 (dd, J = 12.6 and 2.5 Hz, lH, H-2'); HR-MS (ESI-TOF) 
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(rn/z): C29H29N30sS, calcd, 531.1828; found, 531.92 [M +Ht, 632.6916 [M + TEA)t, 

!061.1780 [2M + 1( 

(-)-N4-(4,4'-Dimethoxytrityl)-5'-0-(tetradecanoyl)-2',3'-dideoxy-3'-thiacytidine 

(2.13), (-)-5' -0-(12-azidododecanoyl)-N4-( 4,4 '-dimethoxytrityl)-2' ,3 '-dideoxy-3 '­

thiacytidine (2.14), and (-)-N4-(4,4'-dimethoxytrityl)-5'-0-(12-thioethyldodecanoyl)-

2',3'-dideoxy-3'-thiacytidine (2.15). Compound 2.12 (150 mg, 0.30 mmol), the 

corresponding fatty acid (0.60 mmol), and 2-(lH-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU, 250 mg, 0.65 mmol) were dissolved in 

dry DMF (10 mL). Diisopropylethylamine (DIPEA, 2 mL, 15 mmol) was added to the 

reaction mixture and stirring was continued overnight at room temperature. The reaction 

mixture was concentrated at reduced pressure and the residue was purified with silica gel 

column chromatography using dichloromethane (2% triethylamine) as eluents to afford 

2.13-2.15. 

2.13. Yield (100 mg, 50%); 1H NMR (400 MHz, CD30D, 8 ppm) 8.62 (d, J = 7.8 Hz, 

IH, H-6), 7.40-7.43 (m, 2H, DMTr protons), 7.26-7.30 (m, 6H, DMTr protons), 7.18-

7.22 (m, lH, DMTr proton), 6.85 (d, J = 8.9 Hz, 4H, DMTr protons), 6.28-6.32 (m, lH, 

H-1'), 6.08 (d, J = 7.8 Hz, lH, H-5), 5.34 (t, J = 3.1 Hz, lH, H-4'), 4.07 (dd, J = 12.8 and 

3.1 Hz, lH, H-5"), 3.92 (dd, J = 12.9 and 3.1 Hz, lH, H-5'), 3.78 (s, 6H, DMTr-OCH3), 

3.60 (dd, J = 5.3 and 12.3 Hz, lH, H-2"), 3.36 (d, J = 12.3 Hz, lH, H-2'), 2.29 (t, J = 7.3 

Hz, 2H, CH2CO), 1.60 (t, J = 6.8 Hz, 2H, CH2CH2CO), 1.20-1.42 (br m, 20H, methylene 
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protons), 0.91 (s, J = 6.6 Hz, 3H, CH3). HR-MS (ESI-TOF) (rn/z): C43H55N306S, calcd, 

741 .3812; found, 742.35 [M +Ht, 843.4629 [M + TEAt, 1483.7079 [2M +Ht 

(-)-5'-0-(Tetradecanoyl)-2',3'-dideoxy-3'-thiacytidine 

azidododecanoyl)-2' ,3 '-dideoxy-3 '-thiacytidine (2.17) 

(2.16), 

and 

(-)-5'-0-(12-

(-)-5'-0-(12-

tbioethyldodecanoyl)-2' ,3'-dideoxy-3'-thiacytidine (2.18): Acetic acid (AcOH, 80%, 

10 mL) was added to compounds 2.13-2.15 (0.25 mmol). The reaction mixture was 

heated at 80 °C for 30 min. The reaction mixture was concentrated at reduced pressure 

and the residue was purified with silica gel column chromatography using 

dichloromethane as the eluent to afford 2.16-2.18. 

2.16. Yield (50 mg, 65%); 1H NMR (400 MHz, CDC13, o ppm): 7.72 (d, J = 7.5 Hz, lH, 

H-6), 6.30 (t, J = 4.7 Hz, lH, H-1 '), 5.97 (d, J = 7.5 Hz, lH, H-5), 5.32 (dd, J = 3.5 and 

5.5 Hz, lH, H-4'), 4.51(dd,J=12.1 and 5.5 Hz, lH, H-5"), 4.35 (dd, J = 12.1 and 3.5 

Hz, lH, H-5'), 3.52 (dd, J = 12.0 and 5.4 Hz, lH, H-2"), 3.09 (dd, J = 12.0 and 4.7 Hz, 

lH, H-2'), 2.34 (t, J = 7 .6 Hz, 2H, CH2CO), 1.49-1. 72 (m, 2H, CH2CH2CO), 1.18-1.42 

(hr m, 20H, methylene protons), 0.87 (s, J = 6.7 Hz, 3H, CH3); 
13C NMR (CDCh, 100 

MHz, o ppm): 173.39 (COO), 165.98 (C-4), 155.64 (C-2 C=O), 140.73 (C-6), 94.96 (C-

5), 87.79 (C-1'), 83.21 (C-4'), 64.48 (C-5'), 38.22 (C-2'), 34.24 (CH2COO), 32.10, 29.87, 

29.84, 29.79, 29.65, 29.54, 29.45, 29.31, 25.03, 22.88 (methylene carbons), 14.33 (CH3); 

HR-MS (ESI-TOF) (rn/z): C22H37N30 4S, calcd, 439.2505; found, 440.2835 [M +Ht. 
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2.17. Yield (50 mg, 65%); 1H NMR (400 MHz, CD30D, 5 ppm): 7.71 (d, J = 7.5 Hz, lH, 

H-6), 6.29 (dd, J = 5.2 and 3.8 Hz, lH, H-1'), 6.01 (d, J = 7.5 Hz, lH, H-5), 5.33 (dd, J = 

3.2 and 5.4 Hz, lH, H-4'), 4.51 (dd, J = 12.2 and 5.4 Hz, lH, H-5"), 4.35 (dd, J = 12.2 

and 3.2 Hz, lH, H-5'), 3.52 (dd, J = 12.0 and 5.2Hz, lH, H-2"), 3.21-3.28 (m, 2H, 

cH2N3), 3.08 (dd, J = 12.0 and 3.8 Hz, lH, H-2'), 2.34 (t, J = 7.5 Hz, 2H, CH2CO), 1.54-

1.64 (m, 4H, CH2CH2CO, CH2CH2N3), 1.22-1.38 (br m, 14H, methylene protons); 13C 

NMR (CD30D, 100 MHz, 5 ppm): 173.40 (COO), 164.96 (C-4), 154.96 (C-2 C=O), 

140.98 (C-6), 95.31 (C-5), 87.64 (C-1'), 83.51 (C-4'), 64.32 (C-5'), 51.64 (CH2N3), 38.20 

(C-2'), 34.19 (CH2CO), 29.88, 29.71, 29.60, 29.54, 29.39, 29.29, 29.24, 28.98, 26.86, 

24.98, (methylene carbons); HR-MS (ESI-TOF) (rn/z): C20H32N604S, calcd, 452.2206; 

found, 453.1729 [M +Ht. 

2.18. Yield (50 mg, 65%); 1H NMR (400 MHz, CD30D, 8 ppm): 7.64 (d, J = 7.4 Hz, lH, 

H-6), 6.29-6.35 (m, lH, H-1'), 5.91 (d, J = 7.4 Hz, lH, H-5), 5.30-5.34 (m, lH, H-4'), 

4.49 (dd, J = 12.0 and 5.7 Hz, lH, H-5"), 4.35 (dd, J = 12.0 and 3.2 Hz, lH, H-5'), 3.50 

(dd, J = 12.0 and 5.3 Hz, lH, H-2"), 3.04 (dd, J = 12.0 and 4.6 Hz, lH, H-2'), 2.44-2.63 

(m, 4H, CH2SCH2), 2.34 (t, J = 7.4 Hz, 2H, CH2CO), 1.50-1.79 (m, 4H, SCH2CH2, 

CH2CH2CO), 1.18-1.48 (br m, 17H, methylene protons); 13C NMR (CD30D, 100 MHz, 5 

ppm): 173.36 (COO), 166.01(C-4),155.60 (C-2 C=O), 140.49 (C-6), 95.35 (C-5), 87.73 

(C-1'), 83.03 (C-4'), 64.55 (C-5'), 38.04 (C-2'), 34.20 (CH2COO), 31.82, 29.80, 29.67, 

29.58, 29.41, 29.62, 29.11, 28.90, 25.00, 22.88 (methylene carbons), 14.33 (CH3); HR­

MS (ESI-TOF) (rn/z): C22H37N30 4S2, calcd, 471.2225; found, 472.2418 [M + Ht, 

941.9318 [2M+Ht. 
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S'-0-(Tetradecanoyl)-2',3'-didehydro-2',3'-dideoxythymidine (2.20), 5'-0-(12-

azidododecanoyl)-2' ,3' -didehydro-2' ,3 '-dideoxythymidine (2.21 ), 5'-0-(12-

tbioethyldodecanoyl)-2' ,3' -didehydro-2' ,3 '-dideoxythymidine (2.22), and 5'-0-(12-

bromododecanoyl)-2' ,3'-didehydro-2' ,3'-dideoxythymidine (2.23). Stavudine (2.19, 

100 mg, 0.4 mrnol) and DMAP (80 mg, 0.6 mrnol) were dissolved in dry benzene (20 

mL) and freshly prepared acid chloride (0.48 mrnol) (as described above) was added to 

the mixture. The reaction mixture was refluxed at 100 °C for 4 h. The reaction mixture 

was cooled down to room temperature and neutralized with saturated sodium bicarbonate 

solution (100 mL). The benzene layer was separated and the aqueous layer was extracted 

with dichloromethane (3 x 100 mL). The organic layer was separated and mixed with the 

benzene layer and concentrated at reduced pressure. The residue was purified with silica 

gel column chromatography using dichloromethane and methanol (1 %) as eluents to 

yield 2.20-2.23. 

2.20. Yield (150 mg, 80%); 1H NMR (400 MHz, CDCh, 8 ppm): 9.29 (s, lH, NH), 7.27 

(s, lH, H-6), 7.01-7.07 (br s, lH, H-1'), 6.26-6.32 (m, lH, H-2'), 5.91-5.95 (m, lH, H-3'), 

5.04-5.09 (m, lH, H-4'), 4.44-4.55 (m, lH, H-5"), 4.17-4.34 (m, lH, H-5'), 2.34 (t, J = 

7.4 Hz, 2H, CH2CO), 1.95 (s, 3H, 5-CH3), 1.61-1.67 (m, 2H, CH2CH2CO), 1.16-1.44 (br 

m, 20H, methylene protons), 0.90 (s, 3H, CH3); 
13C NMR (CDCh, 100 MHz, 8 ppm): 

173.72 (COO), 164.28 (C-4 C=O), 151.27 (C-2 C=O), 135.85 (C-6), 133.60 (C-3'), 

127.72 (C-2'), 111.45 (C-5), 90.14 (C-1'), 84.69 (C-4'), 64,86 (C-5'), 34.51 (CH2COO), 

32.29, 30.02, 29.83, 29.73, 29.64, 29.50, 25.19, 23.07 (methylene carbons), 14.52 (5-
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CI-b), 13.03 (CH3); HR-MS (ESI-TOF) (m/z): C24H3sN20 5, calcd, 434.5689; found, 

456.9157 [M +Nat, 474.8787 [M +Kt, 869.0358 [2M +Ht, 891.0285 [2M +Na( 

2.21. Yield (120 mg, 70%); 1H NMR (400 MHz, CDCh, 8 ppm): 9.37 (s, lH, NH), 7.24 

(s, lH, H-6), 6.99-7.03 (br s, lH, H-1'), 6.27 (d, J = 5.7 Hz, lH, H-2'), 5.90 (d, J = 5.7 

Hz, lH, H-3'), 5.02-5.06 (m, lH, H-4'), 4.43 (dd, J = 12.4 and 3.8 Hz, lH, H-5"), 4.22 

(dd, J = 12.4 and 3.8 Hz, lH, H-5'), 3.26 (t, J = 6.9 Hz, 2H, CH2N3), 2.32 (t, J = 7.5 Hz, 

2H, CH2COO), 1.92 (s, 3H, 5-CH3), 1.50-1.70 (m, 4H, CH2CH2COO and CH2CH2N3), 

1.12-1.47 (br m, 14H, methylene protons); 13C NMR (CDCh, 100 MHz, 8 ppm): 173.71 

(COO), 164.35 (C-4 C=O), 151.31 (C-2 C=O), 135.89 (C-6), 133.61 (C-3'), 127.72 (C-

2'), 111.45 (C-5), 90.16 (C-1 '), 84.69 (C-4'), 64,86 (C-5'), 51.85 (CH2N3), 34.49 

(CH2COO), 29.81, 29.61, 29.48, 29.21, 26.30, 25.17 (methylene carbons), 13.03 (CH3); 

HR-MS (ESI-TOF) (m/z): C22H33NsOs, calcd, 447.5279; found, 469.8802 [M + Nat, 

485.8541 [M +Kt. 

2.22. Yield (110 mg, 65%); 1H NMR (400 MHz, CDCh, 8 ppm) 8.37 (s, lH, NH), 7.25 

(s, lH, H-6), 6.99-7.04 (br s, lH, H-1'), 6.29 (d, J = 5.8 Hz, lH, H-2'), 5.92 (d, J = 5.8 

Hz, lH, H-3'), 5.04-5.08 (m, lH, H-4'), 4.45 (dd, J = 12.4 and 4.0 Hz, lH, H-5"), 4.24 

(dd, J = 12.4 and 3.0 Hz, lH, H-5'), 2.45-2.61 (m, 4H, CH2SCH2), 2.34 (t, J = 7.5, 2H, 

CH2COO), 1.94 (s, 3H, 5-CH3), 1.50-1.72 (m, 4H, CH2CH2COO and SCH2CH2), 1.18-

1.42 (hr m, l 7H, methylene protons); 13C NMR (CDCh, 100 MHz, 8 ppm): 173.69 

(COO), 163.69 (C-4 C=O), 150.86 (C-2 C=O), 135.88 (C-6), 133.75 (C-3'), 127.64 (C-

2'), 111.40 (C-5), 90.19 (C-1 '), 84.74 (C-4'), 64.87 (C-5'), 34.52 (CH2COO), 32.07, 30.11, 
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30.04, 29.90, 29.82, 29.74, 29.65, 29.58, 29.52, 29.46, 29.35, 26.32, 25.21 (methylene 

carbons), 15.24 (5-CH3), 13.04 (CH3); HR-MS (ESI-TOF) (m/z): C24H38N20 5S, calcd, 

466.6339; found, 489.4530 [M +Nat, 505.4377 [M +Kt 955.8658 [2M +Nat. 

2.23. Yield (150 mg, 80%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.10 (s, lH, NH), 7.24 

(s, lH, H-6), 7.00 (d, J = 1.7 Hz, lH, H-1'), 6.28 (dd, J = 5.9 and 1.7 Hz, lH, H-2'), 5.90 

(d, J = 5.9 Hz, lH, H-3'), 5.03-5.08 (m, lH, H-4'), 4.43 (dd, J = 12.4 and 4.0 Hz, lH, H-

5'), 4.23 (dd, J = 12.4 and 2.9 Hz, lH, H-5'), 3.54 and 3.42 (t, J = 6.8 and 6.4 Hz, 2H, 

CH2Br isotopes), 2.33 (t, J = 7.50, 2H, CH2COO), 1.93 (s, 3H, 5-CH3), 1.73-1.88 (m, 2H, 

CH2CH2Br), 1.55-1.70 (m, 4H, CH2CH2COO), 1.36-1.48 (m, 2H, CH2CH2CH2Br), 1.20-

1.35 (br m, 12H, methylene protons); 13C NMR (CDCh, 100 MHz, 8 ppm): 173.70 

(COO), 164.30 (C-4 C=O), 151.28 (C-2 C=O), 135.87 (C-6), 133.61 (C-3'), 127.74 (C-

2'), 111.45 (C-5), 90.16 (C-1'), 84.70 (C-4'), 64,88 (C-5'), 45.62 (CH2Br), 34.51 

(CH2COO), 33.20, 29.82, 29.76, 29.62, 29.48, 29.45, 29.13, 28.54, 27.25, 25.18 

(methylene carbons), 13.03 (5-CH3); HR-MS (ESI-TOF) (m/z): C22H33BrN20 5, calcd, 

485.4118; found 507.2254 [M + Natand 509.1860 [M + Nat (Brome isotopes). 

(-)-5'-0-(t-Butyldimethylsilyl)-5-fluoro-2' ,3' -dideoxy-3' -thiacytidine (2.25). 

Emtricitabine (2.24, 500 mg, 2.18 mrnol), tert-butyldimethylsilyl chloride (1 g, 6.54 

mmol), and imidazole (440 mg, 6.54 mrnol) were dissolved in dry DMF (10 mL) and the 

reaction mixture was stirred for 18 h at room temperature. The solvent was concentrated 

at reduced pressure and the residue was purified with silica gel column chromatography 

using dichloromethane and methanol (0-5%) as eluents to yield 2.25(700 mg, 90%). 
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1H NMR (400 MHz, CDCh, 8 ppm): 8.50-9.20 (br s, 2H, NH2), 8.17 (d, J = 6.4 Hz, lH, 

H-6), 6.25 (dd, J = 5.2 and 2.4 Hz, lH, H-1'), 5.17-5.21 (t, J = 2.4 Hz, lH, H-4'), 4.15 

(dd, J = 11.8 and 2.4 Hz, lH, H-5"), 3.90 (dd, J = 11.8 and 2.4 Hz, lH, H-5'), 3.47 (dd, J 

== 12.4 and 5.2 Hz, lH, H-2"), 3.14 (dd, J = 12.4 and 2.4 Hz, lH, H-2'), 0.90 (s, 9H, 

(CH3)3C), 0.10 (s, 6H, CH3Si); 13C NMR (CDCh, 100 MHz, 8 ppm): 158.24 (J = 14.5 

Hz, C-4), 153.73 (C-2C=O), 136.32 (J = 240.7 Hz, C-5), 126.04 (J = 32.7 Hz, C-6), 

88.22 (C-1'), 87.30 (C-4'), 63.66 (C-5'), 39.11 (C-2'), 25.85, 18.56 (CH3)3C-Si), -5.47, -

5.49 (CH3-Si); HR-MS (ESI-TOF) (rn!z): C14H2sFN30 3SSi, calcd, 361.1292; found, 

362.4160 [M +Ht, 723.8098 [2M + H( 

(-)-5' -O-(t-Butyldimethylsilyl)-N4-( 4,4 '-dimethoxytrityl)--5-fluoro-2' ,3' -dideoxy-3' -

thiacytidine (2.26). Compound 2.25 (600 mg, 1.75 mmol) was dissolved in dry pyridine 

(10 rnL). A solution of DMTr-Cl (700 mg, 1.2 equiv) in 10 mL pyridine was added to 

the reaction mixture dropwise at 0 °C. The reaction mixture was stirred for 30 min. The 

temperature was raised to room temperature and stirring was continued overnight. The 

reaction mixture was neutralized with saturated sodium bicarbonate solution (100 mL) 

and was extracted with dichloromethane (3 x 100 mL). The organic layer was separated 

and concentrated at reduced pressure. The residue was purified with silica gel column 

chromatography using dichloromethane and methanol (0-1 %) as eluents to yield 2.26 (1.0 

g, 86%). 

I 
H NMR (400 MHz, CDCh, 8 ppm): 8.73-9.40 (br s, lH, NH), 8.49 (d, J = 6.0, lH, H-6), 

7.27 (d, J = 3.6 Hz, SH, DMTr protons), 7.17 (d, J = 8.7 Hz, 4H, DMTr protons), 6.83 

(d, J = 8.7 Hz, 4H, DMTr protons), 6.26-6.29 (br s, lH, H-1 '), 5.23-5.25 (br s, lH, H-4'), 
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4.25 (dd, J = I0.2 and 1.8 Hz, IH, H-5"), 3.94 (d, J = I0.2 Hz, IH, H-5'), 3.80 (s, 6H, 

DMTr-OCH3), 3.53 (dd, J = I2.2, 4.6, IH, H-2"), 3.24 (d, J = I2.2, lH, H-2'), 0.94 (s, 

9H, (CH3)3C), 0.15 (s, 6H, CH3Si); 13C NMR (CDCh, IOO MHz, 8 ppm): 158.63 (C-4), 

t55.85 (C-2 C=O), I5I.47, I47.33 (DMTr-C), 139.46 (C-5), I29.I4, I27.86, I27.77 

(DMTr-C), I 27 .09 (C-6), I I 3 .17 (DMTr-C), 89 .14 (C-I '), 87 .26 (C-4'), 81.44 (DMTr-C­

NH), 63 .22 (C-5'), 55.26 (DMTr-OCH3), 39.59 (C-2'), 25.86 (CH3-C), I8.66 ((CH3)3C­

Si), -5.46, -5.50 (CH3-Si); HR-MS (ESI-TOF) (m/z): C3sH43FN30sSSi, calcd, 663.2598; 

found, 663.9596 [M +Ht, 765.0250 [M + TEAt. 

(-)-N4-( 4,4 '-Dimethoxytrityl)--5-fluoro-2' ,3 '-dideoxy-3' -thiacytidine (2.2 7). 

Compound 2.26 (1 g, 1.55 mmol) was dissolved in IM solution of tetrabutylammonium 

fluoride (4.5 ml, IM, 3 equiv) and stirred for 3 h. The reaction mixture was concentrated 

at reduced pressure and the residue was purified with silica gel column chromatography 

using dichloromethane (2% triethylamine) and methanol (2 %) as eluents to yield 2.27 

(750 mg, 90%). 

1
H NMR (400 MHz, CDCh, 8 ppm): 7.83-7.96 (m, IH, H-6), 7.I0-7.35 (m, 9H, DMTr 

protons), 6.80 (s, 4H, DMTr protons), 6.42-6.46 (br s, IH, OH), 6.15-6.19 (br s, lH, H-

1'), 5.14-5.I8 (br s, lH, H-4'), 4.06-4.20 (m, lH, H-5"), 3.93 (d, J = 12.5, lH, H-5'), 3.78 

(s, 6H, DMTr-OCH3), 3.34-3.50 (m, lH, H-2"), 2.98-3.15 (m, lH, H-2'); HR-MS (ESI­

TOF) (m/z): C29H29FN30 5S, calcd, 549.1734; found, 550.5078 [M + Ht, 651.6923 

[M+TEAt, 1122.0138 [2M +Nat. 
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(-)-N4-(4,4'-Dimethoxytrityl)-5'-0-(tetradecanoyl)-5-fluoro-2',3'-dideoxy-3'­

thiacytidine (2.28), (-)-5'-0-(12-azidododecanoyl)-N4-( 4,4 '-dimethoxytrityl)-5-fluoro-

2. ,3'-dideoxy-3'-thiacytidine (2.29), and (-)-( 4,4 '-dimethoxytrityl)-5'-0-(12-

thioethyldodecanoyl)- 5-fluoro-2' ,3 '-dideoxy-3 '-thiacytidine (2.30). Compound 2.27 

(250 mg, 0.45 mmol), the corresponding fatty acid (0.90 mmol) and HBTU (350 mg, 0.90 

mmol) were dissolved in dry DMF (10 mL). DIPEA (2mL, 15 mrnol) was added to the 

reaction mixture and stirring was continued overnight at room temperature. The reaction 

mixture was concentrated at reduced pressure and the residue was purified by reversed 

phase HPLC using C1s column and water/acetonitile as solvents as described above to 

afford 2.28-2.30. 

2.28. HR-MS (ESI-TOF) (rn/z): C43H54FN306S, calcd, 759.3717; found, 760.3287 [M + 

Ht, 861.4357 [M+TEAt, 1520.6604 [2M + H( 

2.29. Yield (250 mg, 71 %); 1H NMR (400 MHz, CDCh, 8 ppm): 8.20-9.00 (br s, lH, 4-

NH), 8.07 (d, J = 6.1 Hz, lH, H-6), 7.22-7.33 (m, SH, DMTr protons), 7.17 (d, J = 8.8 

Hz, 4H, DMTr protons), 6.83 (d, J = 8.8 Hz, 4H, DMTr protons), 6.27-6.31 (br s, lH, H-

1'), 5.34-5.39 (m, J = 3.1 Hz, lH, H-4'), 4.65 (dd, J = 12.6 and 3.9 Hz, lH, H-5"), 4.45 

(dd, J = 12.6 and 2.6 Hz, lH, H-5'), 3.71 (s, 6H, DMTr-OCH3), 3.57 (dd, J = 5.1 and 

12.6 Hz, lH, H-2"), 3.20-3.31 (m, 3H, CH2N3, H-2'), 2.40 (t, J = 7.3 Hz, 2H, CH2CO), 

l.55-1. 75 (m, 4H, CH2CH2N3, CH2CH2CO), 1.23-1.41 (br m, 14H, methylene protons); 

13 
C NMR (CDCh, 100 MHz, 8 ppm): 173 .12 (COO), 158.62 (C-4), 156.47 (C-2 C=O), 

152.13, 147.33 (DMTr-C), 139.46 (C-5), 129.14, 127.86, 127.77 (DMTr-C), 127.09 (C-
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6), 113.16 (DMTr-C), 87.25 (C-1'), 85.13 (C-4'), 81.44 (DMTr-C-NH), 62.91 (C-5'), 

55.27 (DMTr-OCH3), 51.49 (CH2N3), 39.16 (C-2'), 33.96, 29.44, 29.38, 29.21, 29.14, 

29.07, 28.84, 26.71, 24.82 (methylene Carbons); HR-MS (ESI-TOF) (m/z): 

c41 H49FN60 6S, calcd, 772.3418; found, 770.8986 [M +Ht. 

2.30. Yield (240 mg, 70%); 1H NMR (400 MHz, CDCh, o ppm): 8.50-9.40 (br s, lH, 4-

NH), 8.09 (d, J = 5.8 Hz, lH, H-6), 7.23-7.34 (m, SH, DMTr protons), 7.17 (d, J = 8.8 

Hz, 4H, DMTr protons), 6.83 (d, J = 8.8 Hz, 4H, DMTr protons), 6.27-6.31 (br s, lH, H­

I'), 5.34-5.38 (br s, lH, H-4'), 4.66 (dd, J = 12.7 and 3.8 Hz, lH, H-5"), 4.45 (dd, J = 

12.7 and 2.1 Hz, lH, H-5'), 3.79 (s, 6H, DMTr-OCH3), 3.58 (dd, J = 12.1 and 4.6 Hz, 

IH, H-2"), 3.23 (d, J = 12.1, lH, H-2'), 2.49-2.58 (m, 4H, CH2SCH2), 2.41 (t, J = 7.4 Hz, 

2H, CH2CO), 1.52-1.72 (m, 4H, SCH2CH2, CH2CH2CO), 1.23-1.43 (br m, 17H, 

methylene protons); 13C NMR (CDCh, 100 MHz, o ppm): 173.09 (COO), 158.63 (C-4), 

156.23 (C2 C=O), 151.71, 147.33 (DMTr-C), 139.46 (C-5), 129.14, 127.85, 127.77 

(DMTr-C), 127.08 (C-6), 113.17 (DMTr-C), 87.24 (C-1'), 85.26 (C-4'), 81.44 (DMTr-C­

NH), 62.84 (C-5'), 55.26 (DMTr-OCH3), 39.23 (C-2'), 33.98, 31.69, 29.65, 29.51, 29.41, 

29.26, 29.22, 29.18, 28.96, 25.96, 24.82 (methylene carbons), 14.84 (CH3); HR-MS (ESI­

TOF) (m/z): C43H54FN30 6S2, calcd, 791.3438; found, 790.0172 [M +Ht. 

(-)-5'-0-(Tetradecanoyl)-5-fluoro-2' ,3 '-dideoxy-3 '-thiacytidine (2.31 ), (-)-5'-0-(12-

azidododecanoyl)-5-fluoro-2' ,3 '-dideoxy-3 '-thiacytidine (2.32), and (-)-5-fluoro-5'-0-

(12-thioethyldodecanoyl)-2' ,3'-dideoxy-3 '-thiacytidine (2.33). AcOH (80%, 10 mL) 

was added to compounds 2.28-2.30 (0.3 mmol). The reaction mixture was heated at 80 
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oc for 30 min. The reaction mixture was concentrated at reduced pressure and the residue 

was purified by reversed phase HPLC using C1s column and water/acetonitile as solvents 

as described above to yield 2.31-2.33. 

2.31. Yield (120 mg, 87%); 1H NMR (400 MHz, CDCh, 8 ppm): 8.03 (d, J = 6.2 Hz, lH, 

H-6), 6.25-6.29 (m, lH, H-1'), 5.33-5.37 (m, lH, H-4'), 4.63 (dd, J = 12.6 and 4.1 Hz, 

lH, H-5"), 4.43 (dd, J = 12.6 and 2.2 Hz, lH, H-5'), 3.56 (dd, J = 12.6 and 5.2 Hz, lH, 

H-2"), 3.23 (d, J = 12.6 Hz, lH, H-2'), 2.29-2.43 (m, , 2H, CH2CO), 1.55-1.73 (m, 2H, 

CH2CH2CO), 1.15-1.49 (br m, 20H, methylene protons), 0.89 (s, J = 6.2 Hz, 3H, CH3); 

13C NMR (CDC13, 100 MHz, 8 ppm): 173.15 (COO), 157.20 (J = 16.4 Hz, C-4), 152.07 

(C-2 C=O), 135.94 (J = 240.1 Hz, C-5), 126.29 (J = 32.4 Hz, C-6), 87.26 (C-1'), 85.02 

(C-4'), 63.00 (C-5'), 39.00 (C-2'), 34.22 (CH2CO), 31.93, 29.65, 29.61, 29.46, 29.36, 

29.28, 29.24, 29.11, 24.83, 22.70 (methylene carbons), 14.13 (CH3); HR-MS (ESI-TOF) 

(m/z): C22H36FN30 4S, calcd, 457.2411; found, 458.0814 [M +Ht, 915.1334 [2M +Ht. 

2.32. Yield ( 125 mg, 88%); 1H NMR (400 MHz, CDCh, 8 ppm) 8.90-9.70 (bs, 2H, 4-

NH2), 8.05 (d, J = 5.9 Hz, lH, H-6), 6.25-6.29 (m, lH, H-1'), 5.33-5.37 (m, lH, H-4'), 

4.62 (dd, J = 12.6 and 4.0 Hz, lH, H-5"), 4.43 (dd, J = 12.6 and 1.8 Hz, lH, H-5'), 3.56 

(dd, J = 12.6 and 5.2 Hz, lH, H-2"), 3.24 (t, J = 6.7 Hz, 3H, H-2', CH2-N3), 2.30-2.43 

(m, 2H, CH2CO), 1.53-1.69 (m, 4H, CH2CH2CO, CH2CH2N3), 1.20-1.40 (br m, 14H, 

methylene protons); 13C NMR (CDCh, 100 MHz, 8 ppm): 173.13 (COO), 156.96 (J = 

16.0 Hz, C-4), 151.89 (C-2 C=O), 135.95 (J = 237.1 Hz, C-5), 126.45 (J = 32.7 Hz, C-

6), 87.25 (C-1'), 85.05 (C-4'), 63.00 (C-5'), 51.47 (CH2N3), 38.90 (C-2'), 34.21 (CH2CO), 
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29.42, 29.36, 29.23, 29.18, 29.11, 29.08, 29.04, 28.82, 26.69, 24.79, 24.76 (methylene 

carbons); HR-MS (ESI-TOF) (m/z): C20H31FN604S, Calcd, 470.2112; found, 471.0575 

[M +Ht, 941.0986 [2M + Ht. 

2.33. Yield ( 110 mg, 80%); 1H NMR (400 MHz, CDCl3) 8 8.07 (d, J = 6.1 Hz, lH, H-6), 

6.26-6.30 (m, lH, H-1 '), 5.37 (t, J = 2.4 Hz, lH, H-4'), 4.65 (dd, J = 12.6 and 4.1 Hz, lH, 

H-5"), 4.45 (dd, J = 12.6 and 2.4 Hz, lH, H-5'), 3.58 (dd, J = 12.7 and 5.3 Hz, lH, H-2"), 

3.23 (dd, J = 12.7 and 2.1 Hz, lH, H-2'), 2.49-2.58 (m, 4H, CH2SCH2), 2.30-2.45 (m, 

2H, CH2COO), 1.53-1.69 (m, 4H, SCH2CH2, CH2CH2CO), 1.24-1.42 (br m, 17H, 

methylene protons). 13C NMR (CDCh, 100 MHz, 8 ppm): 173.08 (COO), 156.00 (J = 

17.2 Hz, C-4), 150.87 (C-2 C=O), 135.67 (J= 239.3 Hz, C-5), 126.79 (J= 32.5 Hz, C-6), 

87.20 (C-1 '), 85.46 (C-4'), 62.75 (C-5'), 39.21 (C-2'), 33.96 (ClhCOO), 31.68, 29.65, 

29.50, 29.40, 29.32, 29.24, 29.15, 29.07, 28.96, 28.88, 25.92, 24.80, 24.73 (methylene 

carbons), 14.83 (G.h); HR-MS (ESI-TOF) (m/z): C22H36FN304S2, calcd, 489.2131; 

found, 489.9879 [M +Ht, 978.9209 [2M +Ht. 

(-)-5'-0-(12(N-Fmoc-aminododecanoyl)-N4-(4,4'-dimethoxytrityl)-2',3'-dideoxy-3'-

thiacytidine (2.34) and (-)-5 '-0-(3(N-Fmoc-aminopropanoyl)-N4-( 4,4 '-

dimethoxytrityl)-2' ,3'-dideoxy-3'-thiacytidine (2.35). Compound 2.12 (320 mg, 0.60 

mmol), the corresponding Fmoc-amino acid (1.2 mmoL), and HBTU (500 mg, 1.3 mmol) 

were dissolved in a mixture of dry DMF (10 mL) and DIPEA (2 mL, 15 mmol). The 

reaction mixture was stirred overnight at room temperature. The reaction mixture was 
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concentrated and dried under reduced pressure to afford crude 5'-0-Fmoc-amino acid 

derivatives ofN4-DMTr-2',3'-dideoxy-3'-thiacytidine, 2.34 and 2.35. 

2.34. HR-MS (ESI-TOF) (m/z): C41H44N40sS, calcd, 824.288; found, 825.2218 [M + 

Ht, 1650.0664 [M +Ht. 

2.35. HR-MS (ESI-TOF) (m/z): Cs6H62N40sS, calcd, 950.4288; found, 951.8527 [M + 

H( 

(-)-5 '-0-(3-Aminopropanoyl)-N4-( 4,4 '-dimethoxytrityl)-2' ,3 '-dideoxy-3 '-thiacytidine 

(2.36) and (-)-5 '-0-(12-aminododecanoyl)-N 4-( 4,4 '-dimethoxytrityl)-2' ,3 '-dideoxy-3 '­

thiacytidine (2.37). The crude products were dissolved in THF (10 mL). To the reaction 

mixture was added piperidine (6 µL, 0.06 mmol) and 1-octanethiol (10 mmol solution in 

THF, 0.6 mL, 6 mrnol). The reaction mixture was allowed to stir for 1 h at room 

temperature. The reaction solution was concentrated at reduced pressure. The residue was 

purified with reversed phase HPLC using C18 column and water/acetonitrile as solvents 

as described above to yield 2.36 and 2.37. 

2.36. Overall yield (200 mg, 55%); HR-MS (ESI-TOF) (m/z): C32H34N406S, calcd, 

602.2199; found, 603.1806 [M +Ht, 1205.0313 [2M +Ht. 

2.37.0verall yield = 210 mg, 52%); HR-MS (ESI-TOF) (m/z): C41Hs2N406S, calcd, 

728.3608; found, 729.2265 [M +Ht, 1458.1201 [2M +Ht. 
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General procedure for the Synthesis of 5'-0-(5(6)-Carboxyfluorescein) Derivatives 

of 3TC (2.38 and 2.39). A mixture of 5(6)-carboxyfluroscein (430 mg, 1.15 mmol), the 

corresponding N4-DMTr-5'-0-arninoacyl derivative of larnivudine (2.36 or 2.37, 0.29 

mmoL), and HBTU (440 mg, 1.15 mmol) were dissolved in a mixture of dry DMF (10 

mL) and DIPEA (2 mL, 15 mmol) and stirred overnight at room temperature. The 

reaction mixture was concentrated and dried under vacuum. ACOH (80%, 10 mL) was 

added to the reaction mixture and was heated at 80 °C for 30 min. The final compounds 

were purified with reversed phase HPLC using C1s column and using water/acetonitile as 

solvents as described above. 

(-)-5'-0-(3-(N (5(6)-Carboxyfluorescein )aminopropanoyl)-2' ,3 '-dideoxy-3 '­

thiacytidine (2.38). Yield (40 mg, 20%); 1H NMR (400 MHz, CD3CN + D20 , o ppm) 

8.41 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 8.11 and 8.12 (two d, J = 8.0 Hz, lH, H-6), 

8.00-8.05 (m, lH, FAM-Ar-H, 5 or 6 isomer), 7.93 (d, J = 8.0 Hz, 0.5H, FAM-Ar-H, 5 or 

6 isomer), 7.53 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 7.29 (d, J = 8.0 Hz, 0.5H, FAM-Ar­

H, 5 or 6 isomer), 6.78-6.90 (m, 4H, FAM-Ar-H), 6.71 (dd, J = 2.4 and 8.9 Hz, 2H, 

F AM-Ar-H, 5 or 6 isomer), 6.10 and , 6.17 (two d, J = 8.0, 2H, H-1 ', H-5), 5.36-5.42 and 

5.25-5.31 (two m, J = 2.9 Hz, lH, H-4'), 4.55 (dd, J = 12.6 and 4.4 Hz, lH, H-5"), 4.32 

(dd, J == 12.6 and 2.9 Hz, lH, H-5'), 3.45-3 .69 (m, 3H, H-2" and CH2NH), 3.13-3.21 (m, 

IH, H-2'), 2.72 and 2.61 (two t, J = 6.5 Hz, 2H, CH2CO); 13C NMR (CD3CN + D20, 100 

MHz, o ppm): 172.49, 172.32 (COO), 168.80 (CONH), 167.24, 167.11 (COO-FAM), 

160.71 (Ar-C-FAM), 159.78, 159.72 (C-4), 154.66 (C-2 C=O), 147.62, 147.55 (Ar-C-
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FAM), 144.50, 144.39 (C-6), 136.44, 133.91, 130.70, 129.60, 128.39, 115.06, 111.93, 

l02.87 (FAM-C), 94.32, 94.26 (C-5), 87.38, 87.21 (C-1 '), 85.17, 84.98 (C-4'), 63.93, 

63.81 (C-5'), 49.09 (CThNH2), 37.98, 37.87 (C-2'), 36.15, 36.06 (CH2COO); HR-MS 

(ESI-TOF) (m/z): C32H26N4010S, calcd, 658.137; found, 330.2546 [M + 2H]2
+, 659.2739 

[M +Ht, 1317.2294 [2M +Ht. 

(-)-5 '-0-(12-(N (5(6)-Carboxyfluorescein )aminododecanoyl)-2' ,3' -dideoxy-3 '­

thiacytidine (2.39). Yield (30 mg, 16%);. 1H NMR (400 MHz, CD3CN + D20, 8 ppm) 

8.28-8.35 (m, 0.5H, FAM-Ar-H, 5 or 6 isomer), 8.11 and 8.12 (two d, J = 8.0 Hz, lH, H-

6), 7.96-8.04 (m, l.5H, FAM-Ar-H), 7.52 (s, 0.5H, FAM-Ar-H, 5 or 6 isomer), 7.25 (d, J 

= 8.0 Hz, 0.5H, FAM-Ar-H, 5 or 6 isomer), 6.68-6.74 (m, 2H, FAM-Ar-H), 6.59-6.67 

(m, 2H, FAM-Ar-H), 6.56 (dd, J = 2.3 and 8.8 Hz, 2H, FAM-Ar-H), 6.13-6.22 (m, lH, 

H-1'), 6.08 and 6.09 (two d, J = 8.0, 2H, H-5), 5.33-5.40 (m, lH, H-4'), 4.50 (dd, J = 

12.5 and 4.8 Hz, lH, H-5"), 4.38 (dd, J = 12.5 and 3.1 Hz, lH, H-5'), 3.54 (dd, J = 5.5 

and 12.6 Hz, lH, H-2"), 3.34 (m, 3H, H-2' and CH2NH), 2.25-2.34 (m, 2H, CH2COO), 

1.40-1.60 (m, 4H, CH2CH2CO, CH2CH2NH), 1.11-1.25 (br m, 16H, methylene protons); 

13
C NMR (CD3CN+D20, 100 MHz, 8 ppm): 174.02 (COO), 170.02 (CONH), 167.21 

(COO-FAM), 160.84 (C-4), 153 .67 (C-2 C=O), 148.19, 145.23 (Ar-C-FAM), 142.19 (C-

6), 137.63, 135.24, 130.52, 130.39, 130.10, 128.11, 126.38, 125.50, 124.85, 123.85, 

113.80, 110.95, 103.48 (FAM-C), 94.73 (C-5), 88.12 (C-1 '), 85.72 (C-4'), 64.39 (C-5'), 

49.69 (CH2NH2), 38.55 (C-2'), 34.54 (CH2COO), 30.17, 30.13, 30.07, 30.01, 29.94, 

29.87, 29.80, 29.71, 29.59 (methylene carbons), 27.58 (CH2CH2NH2), 25.54 
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(CHzCH2COO); HR-MS (ESI-TOF) (m/z): C418,i4N4010S, calcd, 784.2778; found, 

393.0862 [M + 2H]2
+, 784.9019 [Mt, 1569.4510 [2M +Ht. 

2.3.3. Anti-IDV Assays 

Anti-HIV activities of the compounds were evaluated according to the previously 

reported procedure (Krebs et al., 1999). In summary, HeLa (Human cervical carcinoma: 

ATCC CCL-2.1) cell line was used to measure inactivation of both cell-free virus 

preparations and virus-infected cell preparations. Cells were plated in culture plates 24 h 

prior to each experiment. Cell-free viral preparations of HIV-1 strains IIIB 

(lymphocytotropic strain) and BaL (monocytotropic strain) were used for cell-free assay. 

For cell-associated assay, SulTl cells were infected with IIIB virus 5 days prior to the 

experiment. Cell-free virus and virus-infected cells were mixed with different compounds 

and diluted to make different concentrations. The mixture was further diluted with the 

buffer and added to the HeLa cells. The cells were incubated at 3 7 °C for 48 h, stained for 

~-galctosidease expression and compared with ~-galctosidease expression from the ~-gal-

positive cells in absence of any microbicidal compound to get IC50 values. 

2.3.4. Cellular Uptake Study 

All of the stock solutions for compounds FAM, 2.38, and 2.39 were prepared in 

DMSO. The human T lymphoblastoid cells CCRF-CEM (ATCC No. CCL-119) were 

grown on 25 cm2 cell culture flasks with RMPI-1640 medium containing 10% fetal 

bovine serum. Upon reaching about 70% confluency, the cells were treated as described 

below and incubated for 1 h or longer at 3 7 °C. 
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2.3.4.1. Cellular Uptake of FAM, 2.38 and 2.39 at Different Time Points 

When the cells reached about 70% confluency, FAM, 2.38, or 2.39 (1 mL, 20 

µM) in RMPI-1640 medium were added to 1 rnL of cells to make the final concentration 

as 10 µM. The cells were incubated for 0.5, 1, 2, 4, and 8 hat 37 °C. Then the flow 

cytometry assays were performed as described below. 

2.3.4.2. Cellular Uptake of 2.39 at Different Concentrations 

When the cells reached about 70% confluency, 1 rnL of graded concentrations (0, 

1 O, 20, 40, 80, and 200 µM in RMPI-1640) of 2.39 was added to 1 rnL of cells to make 

the final concentration as 0, 5, 10, 20, 40, and 100 µM. The cells were incubated for 1 h 

at 37 °C. Then the flow cytometry assays were performed as described in General 

Information. 

2.3.4.3. Cellular Uptake of 2.38 and 2.39 with Trypsin Treatment. 

The assays were performed as previously described in section 2.3.4.1 at 1 h time 

point with the exception that the cells used were incubated with 0.25% trypsin/0.53 mM 

EDTA for 5 min before washing with PBS (pH 7.4). 

2.3.4.4. Flow Cytometry 

The cells were washed twice with PBS (pH 7.4) at 2000 rpm for 5 min. Then the 

cells were analyzed by flow cytometry (F ACS Cali bur: Becton Dickinson) using FITC 
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channel and CellQuest software. The data presented are based on the mean fluorescence 

signal for 10000 cells collected. All the assays were done in triplicate. 

2.3.5. Cell Viability Assay 

When the cells reached about 70% confluency, the cells were incubated with a 

solution of CCRF-CEM cell alone or 10 µM FAM, 2.38, or 2.39 for 24 hat 37 °C. Then 

20 µL of the cells from each flask were treated with µl of trypan blue (0.1 %) for 1 min. 

The cells were then transferred to a Cellometer® counting slide and analyzed using 

Cellometer Auto T.4 (Nexcelom Bioscience). All the assays were performed in triplicate. 

2.3.6. Real Time Fluorescence Microscopy in Live CCRF-CEM Cell Line 

The cellular uptake studies and intracellular localization of CCRE-CEM cell 

alone, or incubated with 2.38 and 2.39 were imaged using a ZEISS Axioplan 2 light 

microscope equipped with transmitted light microscopy with a differential-interference 

contrast method and an Achroplan 40X objective. The human T lymphoblastoid cells 

CCRF-CEM (ATCC No. CCL-119) were grown on 60 mm Petri Dishes with RPMI-1640 

medium containing 10% fetal bovine serum. Upon reaching about 70% confluency, the 

cells were incubated with a solution of 10 µM of 2.38 and 2.39 for 1 hat 37 °C. They 

were then observed under the fluorescent microscope under bright field and FITC 

channels ( 480/520 nm). 
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2.4. Results and discussion 

2.4.1. Chemistry 

2.4.1.l. Fatty Acyl Ester Derivatives of 3TC, d4T, and FTC 

A number of fatty acyl esters of 3TC, d4T and FTC were synthesized (Figure 2.1) 

to improve the cellular uptake, anti-HIV activity, and resistant profile of the parent 

nucleosides. Four fatty acids, myristic acid, 12-azidododecanoic acid, 12-

thioethyldodecanoic acid, and 12-bromododecanoic acid, were used for the conjugation 

with nucleoside analogs. 

R1 =C13H2r 
N3-C11H22-
CH3CHrS-C11H2r 
Br-C11H2r 

+ R20H ___.... 

~~ 
NH2 0 

F~N YNH IN~O 1 N~O N~O 
~-fOH ~-fOH HO\-d 

s s 
3TC (2.1) FTC (2.24) d4T (2.19) 

R20H = Nucleoside (3TC, FTC, d41) 

Figure 2.1. General structures of fatty acyl ester derivatives of nucleosides. 

Scheme 2.1 depicts the synthesis of the fatty acyl ester derivatives of 3TC. 5'-

Hydroxyl and/or 4-amino positions were substituted with the fatty acids to synthesize 

three classes of compounds: two 5' ,N4-disubstituted (2.2 and 2.3), three N4-substituted 

(2.8-2.10), and three 5'-0-ester (2.16-2.18) of 3TC. 5',N4-Disubstituted derivatives (2.2 

and 2.3) were synthesized by reacting 3TC with the appropriate fatty acyl chloride in 
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presence of DMAP as a base. N4-substituted derivatives (2.8-2.10) were synthesized by 

selectively protecting 5'-hydroxyl group with tert-butyldimethylsilyl chloride in the 

presence of imidazole as a base to afford 2.4, 5'-TBDMS protected 3TC was further 

reacted with the fatty acyl chloride followed by deprotection of TBDMS to afford N4-

substituted derivatives (2.8-2.10). 5'-0-Fatty acyl derivatives of 3TC (2.16-2.18) were 

synthesized by first protecting 4-amino group of 2.4 with DMTr protecting group to 

afford 2.11. The TBDMS group was then removed from 5'-0-position by treatment of 

2.11 with TBAF to yield N4-DMTr derivative of 3TC (2.12). Compound 2.12 was then 

reacted with the fatty acids in the presence of HBTU and DIPEA followed by DMTr 

deprotection to afford 5'-0-(fatty acyl) ester derivatives of 3TC (2.16-2.18). 

Four 5'-0-(fatty acyl) ester derivatives of d4T (2.19-2.22) were synthesized by 

reaction of d4T with the appropriate fatty acyl chloride (myristoyl chlroide, 12-

azidododecanoyl chloride, 12-thiaethyldodecanoyl chloride, and 12-bromododecanoyl 

chloride) in the presence of DMAP as a base (Scheme 2.2). 

Furthermore, three 5'-0-fatty acyl ester derivatives of FTC (2.31-2.33) were 

synthesized (Scheme 2.3) using a similar approach described above for the synthesis of 

5'-0-(fatty acyl) ester derivatives of 3TC (2.16-2.18). 

All compounds were synthesized at 100 mg scale and were tested for the anti-HIV 

and cytotoxicity assays. Compounds 2.8, 2.16, and 2.17 were further synthesized in larger 
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scale (5 g) for further biological evaluations. These three compounds were first purified 

by using silica gel column chromatography (>90% purity) and then HPLC (>99% purity). 

DMTr 

~N 

2.1 R-COCI, DMAP 

lTBDMS-Cl, 

Imidazole, DMF 

R-COCI, DMAP 

1 N~O 
I ; (OH~R_C~O~O~H=--­
~? HBTU,NMM 

2.12 

Acetic acid ., 

Scheme 2.1. Synthesis of fatty acyl ester derivatives of 3TC. 
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R-COCI, DMAP, Benzene 

2.19 
2.20 R = C13H27 

2.21 R = N3-C 11 H2r 

2.22 R = Et-S-C 11 H2r 

2.23 R = Br-C 11 H2r 

Scheme 2.2. Synthesis of 5'-0-(fatty acyl) ester derivatives of Stavudine (d4T). 

2.24 IBDMS-Cl 

TBAF ., 

2.27 

Acetic acid 

2.25 

RCOOH, HBTU, 
DIPEA,DMF 

2.28 R = C 13H27 

2.29R=NrC11 H2r 
2.30R=CH3CH2S-C11H2r 

Scheme 2.1. Synthesis of fatty acyl ester derivatives of FTC. 
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2,4.1.2. 5(6)-Carboxyfluorescein Derivatives of 3TC 

3TC was attached to 5(6)-carboxyfluorescein using P-alanine and 12-

aminododecanoic acid as linkers. First, 3TC-DMTr (2.12) was reacted with the 

corresponding Fmoc-amino acid in the presence of HBTU and DIPEA. Second, N-Fmoc 

deprotection to free amino group was achieved in the presence of piperidine. Finally, 

FAM was attached to free amino group in the presence of HBTU and DIPEA, followed 

by DMTr deprtotection to afford 5(6)-carboxyfluorescein derivatives of 3TC, 2.36 and 

2.37 (Scheme 2.4). These compounds were used for cellular uptake studies to determine 

cellular uptake profile of fatty acyl ester derivatives of 3 TC. 3 TC attached to FAM 

through p-alanine (2.36) was used as a control 3TC analog. 3TC attached to FAM 

through 12-aminododecanoyl(2.37) was used as an analog of 5'-0-(12-azidododecanoyl)-

2',3'-dideoxy-3'-thiacytidine (2.17) and other fatty acid ester analogs of 3TC . 

. DMTr 

~N 
lN~O 

_..DMTr 

::tN 
lN~O {_;) 

10 -S ( OH C-::-i Fmoc-NH-(CH2)n-OH, HBTU, DIPEA, DMF I --j0 1(' ~NHFmoc 
Cs a 

2.12 

2.38; n = 2 
2.39; n = 11 0 

2.34; n = 2 
2.35; n = 11 

1. 5(6)-FAM, HBTU, 

2. Acetic Acid 

j Piporidioo (20%) 

Scheme 2.4. Synthesis of 5'-carboxyfluorescein derivatives of 3TC (2.38 and 2.39) 
through different linkers. 
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2.4.2. Biological Activities 

Although 3TC, FTC, and d4T are less potent than FLT against cell-free virus 

assays, but they exhibited a higher anti-HIV activity against cell-associated virus. Table 

2.2 illustrates the anti-HIV-1 activities of the fatty acyl ester derivatives of3TC, d4T, and 

FTC in comparison with 3TC, FTC, and d4T against cell-free and cell-associated virus. 

The data provide structure-anti-HIV activity relationships for different fatty acyl 

ester derivatives of 3TC by comparing N4-substituted, 5'-0-substituted, and 5'-0,N4-

disubstituted compounds. In general, when the N4 and/or 5'-0 positions were substituted 

with a fatty acid, minimal cytotoxicity was observed (EC50 > 200 µM). 

Anti-HIV activity of the 3TC derivatives was dependent on the site of 

esterification. 5'-0,N4-Disubstituted derivatives of 3TC, 2.2 and 2.3, displayed 

significantly less activity against both cell-free and cell-associated HIV (EC50 = 73-> 154 

µM) when compared with other fatty acyl derivatives of 3TC and 3TC. 

On the other hand, all the N4- or 5' -0-monosubstituted derivatives of 3TC (2.8-

2.10 and 2.16-2.18) exhibited a higher potency than that of 3TC against cell-free virus. 

Although the 5'-0-monosubstituted ester derivatives (2.16-2.18) were the most potent 

compounds against cell-free virus (EC50 = 0.2-2.3 µM) among all 3TC derivatives as 

determined by the viral inhibition assays, they lost their effectiveness when used in the 

cell-to-cell transmission assay (EC50 > 212-228 µM). 
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On the other hand, N4-myristoyl derivative of 3TC, 2.8, exhibited the anti-HIV activity 

against cell-free (ECso = 0.7-10 .. 9 µM) and cell-associated virus (EC50 = 0.7 µM). 

Compound 2.8 was the most versatile analog in the cell-associated lymphocytotropic 

strain (CTC) based inhibition assay and showed 114-fold higher anti-HIV activity against 

cell-associated virus when compared with 3TC (ECso = 80.3 µM) Furthermore, 

compound 2.8 was also more potent than FTC (ECso = 88.6 µM) andd4T (EC50 = 136.1 

µM) in cell-to cell transmission assay (Table 2.2). 

In general, three of 5'-0-(fatty acyl) ester derivatives d4T (2.21-2.23) showed higher anti­

HIV activities (EC50 = 2.3-14.9 µM) against cell-free virus when compared with d4T 

(ECso = 26.8-28.1 µM), but were only moderately active when compared to other 

corresponding fatty acyl derivatives of 3TC and FTC. Among all fatty acyl ester 

derivatives of d4T, 12-azidododecanoyl ester 2.21 was the most potent compound and 

showed 4-9 fold higher anti-HIV activities against cell-free and cell-associated virus 

when compared with d4T (Table 2.2). 

Unlike 3TC and d4T derivatives, 5'-0-(fatty acyl) ester derivatives of FTC, 2.31-2.33, 

were consistently active against both cell-free and cell-associated virus (Table 2.2). These 

compounds exhibited the highest anti-HIV activity against cell-free virus (ECso = 0.04-

0.8 µM) among all the fatty acyl ester derivatives and their parent nucleoside analogs. 5'-

0-Myristoyl derivative of FTC (2.31) displayed about 10-24 fold higher anti-HIV 

activities than those of FTC against cell-free and cell associated virus. 5'-0-12-
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thioethyldodecanoyl derivative of FTC (2.33) displayed slightly higher anti-HIV activity 

than 2.31, but showed higher toxicity against normal cells (EC50 = 93.6 µM). 

In summary, structure-function analysis revealed that the anti-HIV activity of 

fatty acyl substituted derivatives of nucleosides was clearly dependent on the nature of 

the nucleoside and fatty acid analog. The rate of cellular uptake and the intracellular 

hydrolysis to parent nucleoside and fatty acids determine the overall anti-HIV activities 

of the conjugates. 

Table 2.3 shows the anti-HIV activities (in µg/mL) of the 5'-0-fatty acyl ester 

derivatives of FTC compared with the corresponding physical mixtures. The equimolar 

(50:50) physical mixture of FTC with myristic acid (2.34) and 12-thioethyldodecanoic 

acid (2.35) showed significantly less anti-HIV activities (EC50 = 0.1-9.9 µM) than the 

corresponding 5'-0-fatty acyl ester derivatives, 2.31 and 2.33 (EC50 = 0.02-2.4 µM), 

respectively, against cell-free and cell-associated virus. The anti-HIV activity of the 

physical mixtures was only slightly higher than that of FTC. The results indicate that the 

conjugation of FTC with myristic acid analog is critical in improving the anti-HIV profile 

of the conjugate. The comparative studies of physical mixtures with the corresponding 

ester conjugate indicated that the esterification is important for the inhibitor activity, 

especially against cell-associated virus. 
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Table 2.2. In vitro assays of 3TC, d4T and FTC analogs for inhibition of HIV. 

CTS3 VBl(IIIB VBl(BaL)a CT Ce 

Compound iolvent Diluent EC(SO)b CEC(SO) EC(SO) EC(SO) 

{~M) (µM) {~M) {~M) 

2.1 (3TC) DMSO RIO > 200 32.7 I 1.3 80.3 

2.2 DMSO RIO > 200 > 154.0 135.2 > I54.0 

2.3 DMSO RIO > 200 > 148.1 72.7 > I48.1 

2.8 dH20 DMSO > 200 10.9 0.7 0.7 

2.9 dH20 DMSO > 200 29.4 3.8 I4.6 

2.10 DMSO RlO >200 5.3 0.4 > 2I2.2 

2.16 DMSO RlO > 200 0.5 > 0.2 > 227.7 

2.17 DMSO RlO > 200 0.9 0.7 > 221.1 

2.18 DMSO RlO > 200 2.3 0.2 > 2I2.2 

2.19 (d4T) DMSO RlO >200 26.8 28.I I36.1 

2.20 DMSO RlO > 200 78.3 I2.4 > 230.3 

2.21 DMSO RIO > 200 6.7 3.1 22.4 

2.22 DMSO RIO > 200 14.4 5.8 46.5 

2.23 dH20 DMSO > 200 14.9 2.3 > 206.5 

2.24 (FTC) DMSO RIO > 200 1.9 0.7 88.6 

2.31 DMSO RlO > 200 0.1 0.07 3.7 

2.32 DMSO RlO > 200 0.8 0.2 9.1 

2.33 DMSO RlO 93.6 0.05 0.04 4.9 

AZT DMSO RlO > 200 10.9 14.2 >375 

FLT DMSO RlO > 200 0.8 0.4 >4IO 

DMSO DMSO RlO >200 >IOO >IOO >100 
3
Cytotoxicity assay; b50% Effective concentration; cviral entry inhibition assay (lymphocytotropic strain); 

dViral entry inhibition assay (monocytotropic strain); ccell- to- cell transmission assay (IIIB). 

In summary, the conjugation of RT inhibitor nucleoside analogs with selected 

long chain fatty acids (NMT inhibitors) exerted anti-HIV synergic effect. Among 3TC 

derivatives, 2.8, 2.16, and 2.17 exhibited the best anti-HIV profile. 5'-0-Myristoyl FTC 

derivative (2.31) showed consistent anti-HIV activity against cell-free (IIIB and BaL) 
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strains and cell-associated virus, and was the most potent compound among fatty acyl 

derivatives of FTC, 3TC, and d4T .. Compounds 2.8, 2.16, and 2.17 are currently under 

further biological evaluations. 

Table 2.3. Comparison of anti-HIV activities of fatty acyl derivatives of FTC with 
physical mixtures of FTC + fatty acids .. 

CTS" VBI(IlIW VBI(BaL)a CTC 

Compound Chemical Name EC(SO)b EC(SO) EC(SO) EC(SO) 

(µg/ml) (µg/ml) (µg/ml) (µg/ml) 

2.24 FTC > 100 0.48 0.18 21.9 

2.31 5'-0-Myristoyl FTC > 100 0.056 0.033 1.7 

5'-0-(12-
45.8 0.024 2.33 0.02 2.4 

thioethyldodecanoyl) FTC 

Myristic acid +FTC 
> 100 2.34 0.6 0.1 9.9 

(50:50) 

12-thioethyldodecanoic 
> 100 2.35 0.1 0.2 9.8 

acid+ FTC (50:50) 

DMSO DMSO > 100 >100 >100 >100 

3Cytotoxicity assay; b50% Effective concentration; 0 Viral entry inhibition assay (lymphocytotropic 
strain); dViral entry inhibition assay (monocytotropic strain); ecell- to- cell transmission assay (IIIB). 

2.4.3. Spermicidal Activity. 

The spermicidal activities of several fatty acids have been previously reported 

(Brown-Woodman et al., 1985; Jianzhong et al., 1987). The spermicidal activities of 3TC 

(2.1), d4T (2.19), and their fatty acyl ester derivatives 2.2, 2.3, and 2.20-2.22 were 

compared with N-9, a marketed spermicidal product (Figures 2.2 and 2.3). In a dose-

response study to evaluate spermicidal activity, none of these derivatives shows 

significant sperm immobilizing or spermicidal activity, even at their maximum 

concentrations (1 mg/mL). 
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Figure 2.2. In vitro assays for spermicidal activity of 3TC (2.1), 2.2, and 2.3. 



www.manaraa.com

_. 
0 
ID 

120 

100 

80 

60 

40 

20 

0 

,!S\ f"I,"' """' "' ()' r;:,C!' ()":- ~· A~· A~· 
~ ~ Cl> "..., "..., 

"Cl> "Cl> n :' fl,,· 'I-' 
fl,,• 'I-' r 

• Motility@ 10 min • Viability • Post Recovery @40 min 

,!S\ f"I,"' """' "' °' ()C!' ()":- ~· A~• A~· 
~ ~() nvnv 

fl,,() fl,,() '}; '1-'r '1-'r 
fl,,· .,,. 'Ii 

,.5' f'l,"' """' "' ()' r;:,C!' r;:,":- ~- "~- ~ ~ -
~ ~ " n n·• 

1"" 1"" 'Y '1-'r '1-'r 
fl,,• .,,. fl,, 

..5' n'J- n'J- IJ. ()' 
($' "r r ()· "· ~- ~· ~· r\.~ r\.\;. "" ,,,,,,,, ,,,,,,,, .,,.,,,, .,,.,,,, 

fl,,• fl,,• .,,. 

()r:;>' """' """' "' ()' ~· ~":- ~· ~· ~· 
~ ~ ~ ~ ~ 

Compounds (mg/ml) 

Figure 2.3. In vitro assays of for spermicidal activity of d4T (2.19), 2.20, 2.21 and 2.22. 



www.manaraa.com

2.4.4. Cellular Uptake Study 

Studies were performed to understand cellular uptake profile of 5'-0-fatty acyl 

derivatives in comparison with 3TC. 3TC attached to FAM through /)-alanine (2.38) was 

used as a control 3TC analog. 3TC attached to FAM through 12-aminododecanoic acid 

(2.39) was used as an analog of 5'-0-(12-azidododecanoyl)-2',3'-dideoxy-3'-thiacytidine 

(2.16) and other fatty acid ester analogues of 3TC. The human T lymphoblastoid cells 

(CCRF-CEM, ATCC No. CCL-119) were used for the study and were grown to the 70% 

confluency in the culture media. The cells were incubated with the fluorescein-substituted 

conjugates (2.38 and 2.39) in different time periods, concentrations, and in the presence 

or absence of trypsin (Figures 2.4-2.6), DMSO and FAM were used as control for the 

study. The cells were analyzed by flow cytometry (F ACSCalibur: Becton Dickinson) 

using FITC channel and CellQuest software. The data presented are based on the mean 

fluorescence signal for 10000 cells collected. All the assays were carried out in triplicate. 

First, cells were incubated with 10 µM of the compounds in different time periods 

(0.5 h, 1 h, 2 h, 4 h and 8 h, Figure 2.4). Compound 2.39 exhibited 3-6 fold higher 

cellular uptake than that of 2.38 and FAM alone. The results clearly indicate that 

presence of long chain enhances the cellular uptake of 3TC, by increasing lipophilicity. 

The continuous incubation of cells with compounds up to 8 h did not show significant 

difference in the cellular uptake, suggesting that most of the fatty acyl ester derivative is 

absorbed into cells within first 30 min and the cellular uptake was not time dependent. 
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Figure 2.4. Cellular uptake studies for 5(6)-carboxyfluorescein derivatives of 3TC (2.38 

and 2.39) along with FAM and DMSO as controls at different time intervals. 

Cells were then incubated with different concentrations (5, 10, 20, 40 and 100 

µM) of carboxyfluorescein derivatives of 3TC, 2.38 and 2.39 for 1 h (Figure 2.5). The 

data suggest that the cellular uptake was concentration dependent. 
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Figure 2.5. Cellular uptake studies for 5( 6)-carboxyfluorescein derivative of 3TC (2.39) 

at different concentrations. 

To confirm that the enhanced uptake of 5(6)-carboxyfluorescein derivative of 

3TC, 2.39, is not due to the absorption on the cell membrane surface, cells were 

incubated with 10 µM of DMSO, 2.38, and 2.39 for 1 h and then half of the cells were 

finally treated with trypsin for 5 min to wash the adsorbed molecules (if any) from the 

cell membrane. The comparison of the data between trypsin treated and untreated cells 

indicates that only small amount of the fluorescence was due to the absorption on the cell 

membrane surface. The cellular uptake studies after trypsin treatment showed that the 

cellular uptake of 2.39 was still much higher than those of control compounds and 2.38 

(Figure 2.6). Cellular uptake for the trypsin-treated cells with 2.39 was approximately 7 

times higher than that of 2.38. On the other hand, trypsin-untreated cells incubated with 
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2.39 showed only 4-fold higher cellular uptake than 2.38. The results suggest that the 

higher cellular uptake of 2.39 is not due to artificial absorption to the cell membrane. 

~ 
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~ 
c 
"' .. 
::; 

100.00 

50.00 

DMSO 2.38 2.38 + Trypsin 2.39 2.39 + Trypsin 

Figure 2.6. Cellular uptake studies for 2.38 and 2.39 with DMSO as controls with and 

without treatment with trypsin. 

2.4.5. Cell Viability Study 

Cell viability study was performed to analyze the effect of FAM, 2.38 and 2.39 on 

the live cells. CCRF-CEM cells were incubated with 10 µM of the compounds and mixed 

with trypan blue (0.1 %) to color the dead cells. The percentage of viability was calculated 

using Cellometer Auto T.4 (Nexcelom Bioscience). It was observed that at least 80% of 

the cells were viable in presence of the compounds in 24 h incubation period (Figure 2.7). 
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Figure 2.7. Cell viability assay after 3h and 24 h incubation of 2.38 and 2.39 with CCRF-

CEM cells. DMSO and FAM were used as positive controls. 

2.4.6. Real Time Fluorescence Microscopy in Live CCRF-CEM Cells 

CCRF-CEM cells were incubated with 10 µM of DMSO, FAM, 2.38 and 2.39 for 

1 h and were imaged using light microscope (ZEISS Axioplan 2) equipped with 

transmitted light microscopy with a differential-interference contrast method and an 

Achroplan 40X objective. Cells showed no significant fluorescence when incubated with 

DMSO, FAM, and 2.38 (Figure 2.8). On the other hand, cells incubated with 2.39 

showed fluorescence. The results further confirm the higher cellular uptake of 2.39, a 

fatty acyl derivative of 3TC, in comparison to 2.38 and FAM alone. In general, these data 
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indicate that the fatty acyl derivatives of nucleosides have better cellular uptake than their 

parent nucleosides. 

Control-B 

. F~M·B 
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Figure 2.8. Real time fluorescence microscopy in live CCRF-CEM cell line. Control= 

DMSO, FAM = 5(6)-carboxyfluorescein. 
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z.5. Conclusions. 

Several bifunctional 5'-0-substituted or N4-substituted fatty acyl derivatives of 

3TC, d4T, and FTC were designed and synthesized as prodrugs and their biological 

activities, such as anti-HIV activities, spermicidal properties, and cellular uptake 

studies. In general, the conjugation of selected fatty acids with RT inhibitor nucleoside 

analogs resulted in activity better anti-HIV profile because of improved cellular uptake 

of the conjugates and intracellular hydrolysis of the conjugates yielding two parent 

analogs targeting RT and NMT. 

Among all the ester derivatives, 2.31, 2.32, 2.8, 2.16, and 2.17 were found to 

have better anti-HIV activity profile in comparison to 3TC, d4T, FTC and other fatty 

acyl derivatives. 5'-0-Myrsitoyl derivative of FTC (2.31), was found to be the most 

potent anti-HIV compound among the tested compounds and displayed consistent 

activity against cell-free (IIIB and BaL) stains and cell-associated virus. The physical 

mixtures of FTC with myristic acid (2.34) and 12-thioethyldodecanoic acid (2.35) 

showed significantly less anti-HIV activity than the corresponding 5'-0-fatty acyl 

ester derivatives, 2.31 and 2.33, respectively .. The data indicate that conjugation of the 

nucleoside with myristic acid analogs is important in achieving a higher anti-HIV 

activity possibly by improving the cellular uptake. The significant enhancement of 

cellular uptake cannot be obtained by physically mixing the nucleoside and fatty acid. 

3TC derivatives, 2.8, 2.16 and 2.17, exhibited higher anti-HIV activities than 

other 3TC derivatives. Furthermore, N4-myristoyl derivative of 3TC, 2.8, showed the 
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highest anti-HIV activities against cell-associated virus when compared with all tested 

fatty acyl ester derivatives of nucleosides here. 

The presence of long chain fatty acid at 5'-position enhanced the lipophilicity 

of 3TC and the cellular uptake as was shown by cellular uptake studies of 5'­

carboxyfluroscein derivatives of FLT containing short chain (2.38) and long chain 

(2.39) alkyl ester groups. F ACS experiments showed that 2.39 had at least 3-5 fold 

higher cellular uptake in CCRF-CEM cells than 2.38. Fluorescence microscopy of the 

cells incubated with these compounds further confirmed the F ACS results as cells 

incubated with 2.39 showed significantly higher fluorescence when compared with 

cells incubated with FAM and 2.38. These results suggest that the increased inhibition 

by the fatty acyl ester derivatives of 3TC, FTC, and d4T may be due to their increased 

rate of uptake and intracellular hydrolysis yielding two antiviral agents with different 

targets, parent nucleoside and fatty acid analog. These data provided insights for more 

rational design of additional potent and safe anti-HIV microbicides using the 3TC or 

FTC as the parent nucleosides. When taken together, the results will have significant 

implications for the design of more potent and innovative anti-HIV agents. 

2.6. Acknowledgments. 

Support for this subproject (MSA-03-367) was provided by CONRAD, Eastern 

Virginia Medical School under a Cooperative Agreement (HRN-A-00-98-00020-00) 

with the United States Agency for International Development (USAID). The views 

expressed by the authors do not necessarily reflect the views ofUSAID or CONRAD. 

118 



www.manaraa.com

z.1. References 

Bryant, M. L. , McWherter, C. A. , Kishore, N. S., Gokel, G. W., Gordon, J. I. 
MyristoylCoA:protein N-myristoyltransferase as a therapeutic target for inhibiting 
replication of human immunodeficiency virus- I. Perspect. Drug Dis. Des., 1993, 1, 
193-209. 

Das, K. , Xiong, X., Yang, H. , Westland, C. E., Gibbs, C. S., Sarafianos, S. G., and 
Arnold, E. Molecular modeling and biochemical characterization reveal the 
mechanism of hepatitis b virus polymerase resistance to lamivudine (3TC) and 
emtricitabine (FTC). J Viral., 2001, 75, 4771-4779. 

Diallo, K., Gotte, M., Wainbergl , M.A. Molecular impact of the M184V mutation in 
human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents 
Chmother. , 2003, 47, 3377- 3383. 

Farazi, T. A., Waksman, G., Gordon, J. I. The biology and enzymology of protein N­
myristoylation. JBiol. Chem., 2001, 276, 39501-39504. 

Gallant, J. E. , DeJesus, E., Arras, J. R., et al. Tenofovir DF, Emtricitabine, and 
Efavirenz vs Zidovudine, and Efavirenz for HIV. N Engl. J Med., 2006, 354, 251-
260. 

Garcia-Lerma, J. G. , Maclnnes, H., Bennett, D., Reid, P. , Nidtha, S., Weinstock, H. , 
Kaplan, J. E., Heneine, W. A novel genetic pathway of human immunodeficiency 
virus type 1 resistance to stavudine mediated by the K65R mutation. J Viral., 2003, 
77, 5685- 5693 . 

Hurst, M and Noble, S. Stavudine, an update of its use in the treatment of HIV 
infection. Drugs, 1999, 58, 919-949. 

Krebs, F. C. , Miller, S. R. , Malamud, D., Howett, M. K., Wigdahl, B. Inactivation of 
human immunodeficiency virus type 1 by nonoxynol-9, C21G, or an alkyl sulfate, 
sodium dodecyl sulfate. Antiviral Res., 1999, 43 , 147-163 . 

Mansuri, M. M. , Hitchcock, M. J. M., Buroker, R. A., Bregman, C. L., Ghazzouli, I., 
Desiderio, J. V., Starrett, J. E., Sterzycki, R. Z. and Martin, J. C. Comparison of in 
vitro biological properties and mouse toxicities of three thymidine analogs active 
against human immunodeficiency virus. Antimicrob. Agents Chemother. , 1990, 34, 
637-641. 

Masha, S. W. , Wang, C. L. , Nixon, D. E. Review of tenofovir-emtricitabine. 
Ther.Clin. Risk Manag., 2007, 3, 1097-1104. 

Mulder, L. C. F., Harari, A., Simon, V. Cytidine deamination induced HIV-1 drug 
resistance. Proc. Natl. Acad. Sci. US. A., 2008, 105, 5501-5506. 

119 



www.manaraa.com

parang, K., Wiebe, L. I., Knaus, E. E., Huang, J.-S., Tyrrell, D. L., Csizmadia, F. In 
vitro antiviral activities of myristic acid analogs against human immunodeficiency and 
hepatitis B viruses. Antiviral Res., 1997, 34, 75-90. 

Pozniak, A. L., Gallant, J. E., DeJesus, E., Arribas, J. R., Gazzard, B., Campo, R. E., 
Chen, S. S., McColl, D., Enejosa, J., Toole, J. J, Cheng, A. K._Tenofovir disoproxil 
fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and 
efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic 
changes - a 96-week analysis. J Acquir. Immune. De.fie. Syndr., 2006, 43, 535-540. 

Sarafianos, S. G., Das, K., Clark, Jr., A. D., Ding, J., Boyer, P. L., Hughes, S. H., 
Arnold, E. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric 
hindrance with b-branched amino acids. Proc. Natl. Acad. Sci. U S. A., 1999, 96, 
10027-10032. 

Skalaski, V., Chang, C. N., Dutachman, G., Cheng, Y. C. The biochemical basis for 
the differential anti-human immunodeficiency virus activity of two cis enantiomers of 
2',3'-dideoxy-3'-thiacytidine. J Biol. Chem., 1993, 268, 23234-23238. 

Takamune, N., Hamada, H. Misumi, S. And Shoji, S. Novel strategy for anti-HIV-1 
action: selective cytotoxic effect of N-myristoyltransferase inhibitor on HIV-1 infected 
cells. FEES letters., 2002, 527, 138-142. 

Wu, Z., Alexandratos, J., Ericksen, B. , Lubkowshi, J., Gallo, R. C., Lu, W. Total 
chemical synthesis of N-myristoylated HIV-1 matrix protein pl 7: Structural and 
mechanistic implications of pl 7 myristoylation. Proc. Natl. Acad. Sci. U S. A., 2004, 
101, 11587-11592. 

120 



www.manaraa.com

Chapter 3 

Synthesis and Anti-HIV Activities of Succinate, Suberate, Glutamate, and 

Peptide Derivatives of 3'-Fluoro-2',3'-Dideoxythymidine, 3'-Azido-2',3'­

Dideoxythymidine , and 2' ,3' -Dideoxy-3 '-Thiacytidine 

Hitesh K. Agarwal,3 Megrose Quiterio,3 Gustavo F. Doncel,b Keykavous Parang3 

0 Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 

Kingston, RI, USA, 02881;bCONRAD, Department of Obstetrics and Gynecology, 

Eastern Virginia Medical School, Norfolk, VA, USA 23507 

121 



www.manaraa.com

3.1. Abstract 

Three classes of mono- di-, or trinucleoside conjugated on multivalent 

scaffolds (e.g., dicarboxylic acids, amino acids, and peptides) were synthesized to 

generate broad-spectrum anti-HIV agents with higher barrier to drug resistance, and/or 

higher cellular uptake: (i) Unsymmetrical and symmetrical dinucleoside conjugates of 

succinic acid or suberic acid; (ii) Peptides containing one nucleoside and one 

myristoyl group; and (iii) Dinucleoside- and trinucleoside glutamic acid derivatives 

with or without myristoyl moiety. Unsymmetrical dinucleoside succinate derivatives 

were synthesized by reacting nucleoside succinate derivatives with 3'-azido-2',3'­

dideoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine (FLT), or 2',3'-dideoxy-3'­

thiacytidine (3TC) in the presence of HBTU. Symmetrical dinucleoside suberate 

derivatives were synthesized from the reaction of suberic acid with the corresponding 

nucleoside in the presence of HBTU. Small peptides containing one nucleoside and 

one myristoyl group attached to the amino acid side chains were synthesized by using 

Fmoc-solid phase protocol. Dinucleoside- and trinucleoside glutamate derivatives 

containing different nucleosides attached on carboxylic groups and myristoyl or acetyl 

groups at amino group were synthesized by using multi-step solution phase methods. 

The anti-HIV activities of several synthesized compounds were determined against 

cell-free virus and compared with the corresponding physical mixtures. Among all the 

tested compounds, a glutamate derivative containing three different nucleosides, AZT, 

FLT, and 3TC, (3.37; EC50 = 0.96 µM), was found to be the most potent conjugate, 

and exhibited 35-fold higher anti-HIV activity than both AZT (ECso = 34.4 µM) and 

3TC (EC50 = 32.7 µM). Compound 3.37 had a comparable anti-HIV activity to FLT 
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(ECso = 0.8 µM). N-Myristoylated conjugates of the glutamic acid showed 1.5-6 

higher anti-HIV activities than the corresponding N-acetylated conjugates. In general, 

when compared with the corresponding conjugated derivatives, the physical mixtures 

demonstrated higher anti-HIV activity. In addition, the physical mixtures containing 

myristic acid exhibited 2-3 fold higher anti-HIV activity than those without myristic 

acid. These data suggest that the presence of myristic acid plays an important role in 

improving anti-HIV activity of the conjugated compounds or the physical mixtures. 

3.2 Introduction 

Scaffolds are defined as skeleton, core, or template of the structure to which 

multiple functional groups and moieties may be attached. The scaffolds may have 

multiple positions for multivalent linkages. Some examples of scaffolds include 

polycarboxylic acid derivatives, amino acids, and peptides. Herein, we compared the 

anti-HIV activities of nucleosides conjugated on small peptides with those conjugated 

on dicarboxylic acid derivatives (i.e. , suberic acid, succinic acid) and glutamic acid. 

For example, diversity in the structure and physicochemical properties of peptides 

allow their applications in targeted drug delivery, enzyme inhibitors, and scaffolds. 

Peptides-based prodrugs are commonly used in drug delivery. Peptides have 

been used as linkers to deliver drugs at desired site where they undergo site specific 

enzymatic hydrolysis to deliver the active molecules. For example, Chau et al. have 

used a specific peptide sequence of matrix metalloproteinase, an enzyme 

overexpressed in cancer cells, to deliver anti-cancer drugs, such as methotrexate to the 

cancer cells (Chau et al., 2004, Chau et al., 2005, and Chau et al., 2006). Peptides with 
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different chain lengths have also been used as spacers to deliver active drugs after 

Jysosomal hydrolysis of the peptide conjugates (Penugonda et al., 2007, Subr et al., 

I 992, Soyez et al., 1996). 

Peptide esters have been previously used to improve the bioavailability of the 

active drugs. Peptide prodrugs of lopinavir showed higher oral bioavailability than 

Jopinavir itself (Agarwal et al., 2008). Peptide conjugates of 5-aminolaevulinic acid 

showed improved pharmacological response as a result of better cellular uptake 

(Bourre et al., 2008). 

Furthermore, peptide derivatives are also being used to produce direct 

pharmacological activity against some targeted enzymes. Ramipril, enalapril, and 

captopril are peptide-based compounds that are used as angiotensin converting 

enzyme inhibitors (Acharya et al., 2003). Enfuvirtide is a recently approved anti-HIV 

drug that acts as the anti-HIV entry blocker, and is a peptide structure based derivative 

(Lazzarin, 2005). Several HIV protease inhibitors, such as lopinavir, saquinavir, are 

also peptide-based drugs (Agarwal et al., 2008, Cvetkovic et al., 2003). 

Although the introduction of highly active antiretroviral therapy (HAART) in 

the mid-l 990s has resulted in a decrease of the morbidity and mortality in the HIV-1 

patient population that has access to treatment, therapy failure still occurs. A 

combination of reverse transcriptase (RT) inhibitor nucleoside analogs is used m 

HAART to reduce the viral load. Each nucleoside analog has different cellular uptake 

rate and pharmacokinetics. Several of nucleoside analogs succumb to newly developed 

resistant virus. For example, Lamivudine is a (-)-2',3'-dideoxy-3'-thiacytidine analog 

that is used in the treatment of both HIV-1 and hepatitis disease (Skalski et al., 1993) .. 
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Although Lamivudine has good activity against wild type HIV, a single point mutation 

at 184 residue results in 3TC-resistant mutant virus (Ml84V/I) (Mulder et al., 2008, 

Sarafianos et al., 1999, Diallo et al., 2003). Several studies have provided different 

reasons for resistance development, such as cytidine deamination and the generation 

of steric hindrance at 184 amino acid residues. Similar to the HIV, mutation at Met552 

with Val and Ile (M552V/I) results in 3TC and FTC resistant HBV strains (Das et al., 

2001). Nucleoside analogs are also very polar and have limited cellular uptake. 

Therefore it is logical to develop new and more potent multi-nucleoside conjugates, 

with major advantages to HAART therapy that display broad-spectrum activity against 

drug-resistant HIV, have higher cellular uptake, and can deliver several RT nucleoside 

inhibitors simultaneously to the HIV-infected cells. 

The objective of this research was to design multi-nucleoside conjugates 

substituted on a multivalent scaffold. The conjugates may have application in delivery 

of several nucleosides to the infected cells, broad-spectrum activity, and a higher 

barrier to drug resistance. Herein, we report the synthesis and anti-HIV evaluation of, 

three classes of nucleoside analog (AZT, FLT, or 3TC) conjugates. In the first class, 

combinations of two similar or different nucleosides, (AZT, FLT, or 3TC) were 

attached to the carboxylic acid groups of succinic acid and suberic acid. Second class 

of compounds includes myristoyl or acetyl derivatives of di- or trinucleoside-glutamic 

acid conjugates containing more than one nucleoside. In the third class of compounds, 

peptide derivatives containing nucleosides and myristoyl group on the side chain were 

synthesized. 
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Nucleoside-scaffold conjugates were designed with the expectation that the 

attachment of more than one nucleoside analog to the scaffold will generate a prodrug 

capable of delivering different nucleosides to the HIV-infected cells . Myristic acid 

was attached to the scaffolds to improve the lipophilicity of the conjugates and their 

cellular uptake. It was expected that once the conjugate enters the cells, it will be 

hydrolyzed by esterase and/or peptidases to generate parent nucleoside analogs. The 

release of different nucleosides will help to increase the barrier to resistance to the 

individual compounds. The combined conjugates may have also the benefits of 

synergistic antiviral effects on HIV-1 and HIV-2, increased antiviral spectrum, dosing 

simplicity, and favorable pharmacokinetic properties. 

3.3 Materials and Methods 

3.3.1 Materials 

Succinic acid, succinyl chloride, suberic acid, pyridine, acetonitrile, and 

diisopropylethylamine (DIPEA) were purchased from Fisher Scientific. Fmoc 

protected amino acids (Fmoc-Glu-OtBu, Fmoc-Ser-OH, Fmoc-Lys(Mtt)-OH, Fmoc-P­

Ala-OH, Fmoc-Gly-OH, and 2-(lH-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) were purchased from Novabiochem. Lamivudine, 

Zidovudine, and Alovudine were purchased from Euro Asia Tran Continental 

(Bombay, India). All the other reagents including solvents were purchased from Fisher 

Scientific. 
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The products were purified on a Phenomenex®Gemini 1 O µm ODS reversed-

phase column (2.1 x 25 cm) with Hitachi HPLC system using a gradient system at 

constant flow rate of 17 ml/min (Table 3.1). 

Table 3.1. HPLC method used for the purification of the compounds. 

Time Water Acetonitrile Flow rate 
(minutes) Concentration Concentration (mL/min) 

A(%) B (%) 
0.00 100.0 0.0 1.0 

1.0 100.0 0.0 17.0 

45.0 0.0 100.0 17.0 

55.0 0.0 100.0 17.0 

59.0 100.0 0.0 17.0 

60.0 100.0 0.0 1.0 

PS3 automated peptide synthesizer (Rainin Instrument Co., Oakland, CA) was 

used to synthesize peptides. In general, all peptides were synthesized by the solid-

phase synthesis strategy employing N-(9-fluorenyl)methoxycarbonyl (Fmoc)-based 

chemistry and Fmoc-L-amino acid building blocks. 2-(lH-Benzotriazole-1-yl)-

1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and NMM in N,N-

dimethylformamide (DMF) were used as coupling and activating reagents, 

respectively. Wang resin, Fmoc-amino acid Wang resins, coupling reagents, and 

Fmoc-amino acid building blocks were purchased from Novabiochem. 

The chemical structures of final products were characterized by nuclear 

magnetic resonance spectrometry (1H NMR and 13C NMR) determined on a Bruker 

NMR spectrometer ( 400 MHz). Chemical shifts are reported in parts per millions 
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(ppm). The chemical structures of final products were confirmed by a high-resolution 

PE Biosystems Mariner API time-of-flight electrospray mass spectrometer. 

3.3.2. Chemistry 

3.3.2.1. Synthesis of Unsymmetrical and Symmetrical Dinucleoside Conjugates of 

Succinic acid or Suberic acid. FLT, AZT, and 3TC were attached to succinic acid 

and suberic acid to synthesize dinucleoside derivatives of succinic acid and suberic 

acid respectively. 

5'-0-(Succinate)-3'-fluoro-2',3'-dideoxythymidine (3.1) and 5'-0-(succinate)-3'­

azido-2',3'-dideoxythymidine (3.2). Succinic anhydride (290 mg, 2.90 mrnol) and 

nucleoside (AZT or FLT) (l.45 mmol) were dissolved in dry pyridine (15.0 mL). The 

reaction mixture was stirred at room temperature overnight. The solvent was 

evaporated under reduced pressure and the crude product was purified with reversed 

phase HPLC using a C18 column and water/acetonitrile as solvents as described above 

in Table 3.1. 

3'-Fluoro-2',3'-dideoxy-5'-0-(succinate)thymidine (3.1). Yield (350 mg, 70%); 1H 

NMR (400 MHz, CDCh, 8 ppm): 10.73 (s, lH, NH), 7.41 (s, lH, H-6), 6.06 (dd, J= 

4.5 and 9.7 Hz, lH, H-1'), 5.36 (dd, J= 4.6 and 53.4 Hz, lH, H-3'), 4.99 (d, J= 12.7 

Hz, lH, H-5"), 4.38-4.54 (m, lH, H-4'), 4.14 (dd, J = 3.5 and 12.7 Hz, lH, H-5'), 

2.53-2.97 (m, 4H, succinate protons), 2.40-2.51 (m, lH, H-2"), 2.01-2.23 (m, lH, H-

2'), 1.86 (s, 3H, 5-CH3); 
13C NMR (CDCh, 100 MHz, 8 ppm): 178.40 (COOH), 
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l73.26 (COOFLT), 167.11 (C-4 C=O), 149.52 (C-2 C=O), 138.20 (C-6), 109.96 (C-

5), 93.81(J=176.9 Hz, C-3'), 86.05 (C-1'), 83.88 (J= 26.9 Hz, C-4'), 63.79 (J= 10.9 

Hz, C-5'), 39.22 (J = 20.1 Hz, C-2'), 29.03 (succinate CH2), 28.82 (succinate CH2), 

12.70 (5-CH3); HR-MS (ESI-TOF) (m/z): C14H11FN201: calcd, 344.1020; found, 

345.4061 [M +Ht, 689.5581 [2M +Ht. 

5'-0-(Succinate)-3'-azido-2',3'-dideoxythymidine (3.2). Yield (350 mg, 70%); 1H 

NMR (400 MHz, CD30D, 8 ppm): 11.37 (br s, lH, NH), 7.51 (s, lH, H-6), 6.14 (t, J= 

6.5 Hz, lH, H-1'), 4.49 (dd, J= 5.9 and 13.4 Hz, lH, H-3'), 4.32 (dd, J= 4.5 and 12.1 

Hz, lH, H-5"), 4.19 (dd, J= 3.7 and 12.1 Hz, lH, H-5'), 3.96 (dd, J= 4.5 and 9.5 Hz, 

lH, H-4'), 2.27-2.52 (m, 6H, succinate protons, H-2", H-2'), 1.80 (s, 3H, 5-CH3); HR­

MS (ESI-TOF) (m/z): C14H11N50 7: calcd, 367.1128; found, 368.1823 [M + Ht, 

390.1566 [M +Nat, 735.3566 [2M + Ht, 757.3207 [2M +Nat, 789.2567 [2M + 

2Nat 

[5'-0-(3'-Azido-2 ',3 '-dideoxythymidinyl)] [5'-0-(3'-fluoro-2 ',3 '­

dideoxythymidineyl)]-1,4-succinate (3.3). Compound 3.1 (100 mg, 0.29 mmol), 

AZT (100 mg, 0.37 mmoL), HBTU (440 mg, 1.15 mmol), and DIPEA (2 mL, 15 

mmol) were dissolved in dry DMF (10 mL) and stirred overnight at room temperature. 

The reaction mixture was concentrated and dried under vacuum. The residue was 

purified with reversed phase HPLC using a C18 column and water/acetonitrile as 

solvents as described above to yield 3.3 (110 mg, 65%). 
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1H NMR (400 MHz, CD3CN, 8 ppm): 7.35, 7.34 (s, 2H, AZT H-6, FLT H-6), 6.18 

(dd, J= 5.7 and 53.4 Hz, lH, FLT H-1'), 6.05 (t, J= 6.3 Hz, lH, AZT H-1'), 5.21 (dd, 

J= 5.1 and 9.0 Hz, lH, FLT H-3'), 4.04-4.42 (m, 6H, AZT H-3', AZT H-5', AZT H-

5", FLT H-5', FLT H-5", FLT H-4'), 3.97 (dd, J = 4.6 and 9.2 Hz, lH, AZT H-4'), 

2.09-2.73 (m, 8H, succinate protons, AZT H-2", AZT H-2', FLT H-2", FLT H-2'), 

1.80 (s, 6H, 5-CH3); 13C NMR (CD3CN, 100 MHz, 8 ppm): 173.58, 173.56 (COOFLT, 

COOAZT), 165.96, 165.92 (FLT C-4 C=O, AZT C-4 C=O), 151.74, 151.68 (FLT C-2 

C=O, AZT C-2 C=O), 137.41, 136.96 (FLT C-6, AZT C-6), 111.88, 111.76 (FLT C-5, 

AZT C-5), 94.80 (J = 175.1 Hz, FLT C-1'), 85.97 (FLT C-3'), 85.60 (AZT C-1'), 

83.05 (J= 26.4 Hz, FLT C-4'), 83.14 (AZT C-4'), 64.68, 64.37 (AZT C-5', FLT C-5'), 

61.8 (AZT C-3'), 38.05 (J = 20.6 Hz, FLT C-2'), 37.15 (AZT C-2'), 29.5 (succinate 

CH2), 12.5, 12.45 (FLT 5-CH3, AZT 5-CH3); HR-MS (ESI-TOF) (m/z): 

C24H2sFN7010: calcd, 593.1882; found, 594.0366 [M +Ht. 

[5'-0-(3 '-Fluoro-2 ',3'-dideoxythymidineyl)] [(-)-5'-0-(2' ,3'-dideoxy-3'­

thiacytidinyl) ]-1,4-succinate (3.4). The synthesis of (-)-N4-( 4,4'-dimethoxytrityl)-

2',3'-dideoxy-3 '-thiacytidine was previously described in Chapter 2. Compound 3.1 

(100 mg, 0.29 mmol), 2.12 (100 mg, 0.37 mmoL), HBTU (440 mg, 1.15 mmol), and 

DIPEA (2 mL, 15 mmol) were dissolved in dry DMF (10 mL) and stirred overnight at 

room temperature. The reaction mixture was concentrated, and acetic acid (80%, 10 

mL) was added to the residue. The mixture was stirred at 80 °C for 30 min. The 

reaction mixture was concentrated and dried under vacuum. The residue was purified 
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with reversed phase HPLC using a C1s column and water/acetonitrile as solvents as 

described above to yield 3.4 (80 mg, 50 %). 

1H NMR (400 MHz, CD3CN, 8 ppm): 7.98 (d, J = 7.9 Hz, lH, 3TC H-6), 7.37 (s, lH, 

FLT H-6), 6.16-6.23 (m, 2H, 3TC H-1', FLT H-1'), 6.12 (d, J= 7.9 Hz, lH, 3TC H-5), 

5.36 (t, J= 4.2 Hz, lH, 3TC H-4'), 5.23 (dd, J= 5.2 and 53.4 Hz, lH, FLT H-3'), 4.18-

4.46 (m, 5H, 3TC H-5', 3TC H-5", FLT H-4', FLT H-5', FLT H~5"), 3.53 (dd, J= 5.6 

and 12.2 Hz, lH, 3TC H-2'), 3.22 (dd, J= 3.0 and 12.2 Hz, lH, 3TC H-2"), 2.48-2.68 

(m, 5H, succinate protons, FLT H-2"), 2.14-2.24 (m, lH, FLT-H-2'), 1.80 (s, 3H, 

FLT-5-CH3); 
13C NMR (CD3CN, 100 MHz, 8 ppm): 173.64 (COOFLT), 173.40 (­

COO 3TC), 165.98 (3TC C-4 C=O), 160.28 (FLT C-4 C=O), 151.78 (3TC C-2 C=O), 

148.20 (FLT C-2 C=O), 145.05 (3TC C-6), 137.03 (FLT C-6), 111.94 (FLT C-5), 

95 .01 (3TC C-5), 94.85 (J = 175.0 Hz, FLT C-3'), 87.95 (3TC C-1'), 86.03 (FLT C­

l'), 85.03 (3TC C-4'), 83.10 (J= 26.5 Hz, FLT C-4'), 64.88, 64.77 (FLT C-5', 3TC C-

5'), 38.14 (J = 20.4 Hz, FLT C-2'), 38.09 (3TC C-2'), 29.54, 29.44 (succinate CH2), 

12.50 (FLT 5-CH3); HR-MS (ESI-TOF) (m/z): C22H26FN509S: calcd, 555.1435; 

found, 556.0964 [M +Ht. 

[5'-0-(3 '-Azido-2 ',3 '-dideoxythymidinyl)] [(-)-5'-0-(2' ,3 '-dideoxy-3'-

thiacytidinyl) ]-1,4-succinate (3.5). Compound 3.2 (100 mg, 0.29 mmol), 2.12 (100 

mg, 0.37 mrnoL), HBTU (440 mg, 1.15 mmol), and DIPEA (2 mL, 15 mmol) were 

dissolved in dry DMF (1 O mL) and stirred overnight at room temperature. The 

reaction mixture was concentrated and acetic acid (80%, 10 mL) was added to the 

residue. The mixture was stirred at 80 °C for 30 min. The reaction mixture was 
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concentrated and dried under vacuum. The residue was purified with reversed phase 

HPLC using a C1s column and water/acetonitile as solvents as described above to yield 

3.5 (80 mg, 50 %). 

'H NMR (400 MHz, CD3CN, 8 ppm): 7.99 (d, J = 7.9 Hz, lH, 3TC H-6), 7.35 (s, lH, 

AZT H-6), 6.21 (dd, J= 3.2 and 5.5 Hz, lH, 3TC H-1'), 6.13 (d, J= 7.9 Hz, lH, 3TC 

H-5), 6.06 (t, J= 6.4 Hz, lH, lH, AZT H-1',) 5.36 (t, J= 4.1 Hz, lH, 3TC H-4'), 4.43 

(d, J = 4.0 Hz, lH, AZT H-3'), 4.23-4.29 (m, 4H, 3TC H-5', 3TC H-5", AZT H-5', 

AZT H-5"), 3.87-4.05 (m, lH, AZT H-4'), 3.53 (dd, J= 5.5 and 12.2 Hz, lH, 3TC H-

2'), 3.22 (dd, J = 3.2 and 12.2 Hz, lH, 3TC H-2"), 2.64 (s, 4H, succinate protons), 

2.38 (t, J = 6.4 Hz, 2H, AZT H-2' and H-2"), 1.80 (s, 3H, AZT 5-CH3); 
13C NMR 

(CD3CN, 100 MHz, 8 ppm): 173.60 (COOAZT), 173.38 (COO 3TC), 165.92 (3TC C-

4 C=O), 160.34 (AZT C-4 C=O), 151.67 (3TC C-2 C=O), 148.20 (AZT C-2 C=O), 

145.02 (3TC C-6), 137.42 (AZT C-6), 111.76 (AZT C-5), 95.00 (3TC C-5), 87.96 . 

(3TC C-1'), 85.60 (AZT C-1'), 85.07 (3TC C-4'), 82.25 (AZT C-4'), 64.85, 64.30 

(AZT C-5', 3TC C-5'), 60.85 (AZT C-3'), 38.13 (3TC C-2'), 37.20 (AZT C-2'), 29.54, 

29.44 (succinate CH2), 12.48 (AZT 5-CH3); HR-MS (ESI-TOF) (rn/z): C22H26Ns09S: 

calcd, 578.1543; found, 579.0164 [M +Ht. 

Di[S'-0-(3'-azido-2',3'-dideoxythymidinyl)]-1,4-succinate (3.6) and di[S'-0-(3'­

fluoro-2',3'-dideoxythymidinyl))-1,4-succinate (3.7). FLT or AZT (0.45 mmol) and 

DMAP (110 mg, 0.90 mmoL) were dissolved in dry benzene (10 mL). Succinyl 

chloride (22 µL, 0.2 mmoL) was added to the reaction mixture. The reaction mixture 

was stirred overnight at room temperature, concentrated at reduced pressure, and dried 
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under vacuum. The residue was purified with reversed phase HPLC using a C1s 

column and water/acetonitile as solvents as described above to yield 3.6 or 3.7. 

3.6. Yield (100 mg, 80%); 1H NMR (400 MHz, CD30D, o ppm): 7.40 (s, 2H, H-6), 

6.09 (t, J= 6.4 Hz, 2H, H-1'), 4.40 (dd, J= 4.8 and 9.0 Hz, 2H, H-3'), 4.23-4.36 (m, 

4H, H-5' and H-5",), 4.00 (dd, J = 4.8 and 9.0 Hz, 2H, H-4'), 2.70 (s, 4H, succinate 

protons), 2.34-2.51 (m, 4H, H-2' and H-2"), 1.87 (s, 3H, 5-CH3); 
13C NMR (CD30D, 

100 MHz, o ppm): 173.30 (COOAZT), 165.87 (C-4 C=O), 151.70 (C-2 C=O), 137.36 

(C-6), 111.78 (C-5), 86.23 (C-1'), 82.63 (C-4'), 64.46 (C-5'), 61.37 (C-3'), 37.68 (C-

2'), 29.56 (succinate CH2), 12.68 (5-CH3); HR-MS (ESI-TOF) (m/z): C24H28N100 10: 

calcd, 616.199; found, 617.1990 [M +Ht, 1233.1624 [M +Ht. 

3.7. Yield (100 mg, 80%); 1H NMR (400 MHz, CD30D, o ppm): 7.43 (s, 2H, H-6), 

6.27 (dd, J= 6.5 and 8.9 Hz, 2H, H-1'), 5.24 (dd, J= 4.9 and 53.6 Hz, 2H, H-3'), 4.35-

4.48 (m, 4H, H-4', H-5"), 4.27 (dd, J = 2.8 and 10.9 Hz, 2H, H-5'), 2.70 (s, 4H, 

succinate protons), 2.50-2.641 (m, lH, H-2"), 2.18-2.44 (m, lH, H-2'), 1.89 (s, 3H, 5-

CH3); 13C NMR (CD30D, 100 MHz, o ppm): 173.68 (COOFLT), 166.41 (C-4 C=O), 

152.36 (C-2 C=O), 137.40 (C-6), 112.50 (C-5), 95.11(J=177.2 Hz, C-3'), 86.90 (C­

l'), 83 .97 (J= 26.2 Hz, C-4'), 65.28 (C-5'), 38.90 (J= 21.1 Hz, C-2'), 30.02 (succinate 

CH2), 13.25 (5-CH3); HR-MS (ESI-TOF) (m/z): C24H28F2N4010: calcd, 570.1773; 

found, 571.2164 [M + Ht, 1141.1336 [M +Ht. 

Di [ 5 '-0-(3 '-azido-2 ',3 '-dideoxythymidinyl) ]-1,8-su berate (3.8) and di [ 5 '-0-(3 ' -

fluoro-2',3'-dideoxythymidinyl)]-1,8-suberate (3.9). AZT or FLT (0.58 rnrnol), 
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suberic acid (50 mg, 0.29 rnrnol), HBTU (440 mg, 1.15 rnrnol), and DIPEA (2 mL, 15 

nunol) were dissolved in dry DMF (10 mL). The reaction mixture was stirred 

overnight at room temperature, concentrated, and dried under vacuum. The residue 

was purified with reversed phase HPLC using a C1s column and water/acetonitile as 

solvents as described above to yield 3.8 and 3.9. 

3.8. Yield (60 mg, 30 %); 1H NMR (400 MHz, CD30D, 8 ppm): 7.33 (s, 2H, H-6), 

6.07 (t, J= 6.3 Hz, 2H, H-1'), 4.11-4.34 (m, 6H, H-3', H-5', and H-5"), 4.23-4.36 (m, 

4H, H-4'), 2.33 (dt, 8H, CH2COO, H-2' and H-2"), 1.80 (s, 6H, 5-CH3), 1.52 (t, J= 6.2 

Hz, 4H, CH2CH2COO), 1.18-1.30 (br m, 4H, suberate methylene); 13C NMR (CD30D, 

100 MHz, 8 ppm): 174.78 (COOAZT), 165.78 (C-4 C=O), 151.66 (C-2 C=O), 137.24 

(C-6), 111.65 (C-5), 85.59 (C-1'), 83.28 (C-4'), 64.04 (C-5'), 61.08 (C-3'), 37.34 (C-

2'), 34.44 (CH2COO), 29.03 (CH2CH2COO), 25.13 (suberate CH2), 12.52 (5-CH3); 

HR-MS (ESI-TOF) (rn/z): C2sH36N1o010: calcd, 672.2616; found, 673.1400 [M +Ht. 

3.9. Yield (60 mg, 30%); 1H NMR (400 MHz, CD30D, 8 ppm): 7.36 (s, 2H, H-6), 

6.18 (dd, J= 5.6 and 8.9 Hz, 2H, H-1'), 5.24 (dd, J= 5.l and 53.1Hz,2H, H-3'), 4.39 

(dt, J = 3.5 and 26.6 Hz, 2H, H-4'), 4.27 (dd, J= 3.5 and 12.1Hz,2H, H-5'), 4.17 (dd, 

J= 3.5 and 12.1 Hz, 2H, H-5"), 2.46 (m, 2H, H-2"), 2.13-2.33 (m, 6H, CH2COO, H-

2'), 1.79 (s, 6H, 5-CH3), 1.44-1.55 (m, 4H, CH2CH2COO), 1.15-1.27 (m, 4H, suberate 

methylene); 13C NMR (CD30D, 100 MHz, 8 ppm): 174.86 (COOFLT), 165.88 (C-4 

C==O), 151.74 (C-2 C=O), 136.86 (C-6), 111.77 (C-5), 94.96 (J = 175.0 Hz, C-3'), 

86.05 (C-1'), 83.22 (J= 26.3 Hz, C-4'), 64.30 (C-5'), 38.41, 38.20 (J= 178.3 Hz, C-

2'), 34.38 (CH2COO), 28.97 (CH2CH2COO), 25.06 (suberate CH2), 12.54 (5-CH3); 
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HR-MS (ESI-TOF) (m/z): C2sH36F2N4010: calcd, 626.2399; found, 627.1035 [M + 

Ht, 1253.4346 [M +Ht. 

Di[(-)-5'-0-(2',3'-dideoxy-3'-thiacytidinyl)-1,8-suberate (3.10). Compound 2.12 

(31 O mg, 0.58 mmol), suberic acid (50 mg, 0.29 mmol) HBTU ( 440 mg, 1.15 mmol), 

and DIPEA (2 mL, 15 mmol) were dissolved in dry DMF (10 mL). The mixture was 

stirred overnight at room temperature and was concentrated at reduced pressure. 

Acetic acid (80%, 10 mL) was added to the residue and the reaction mixture was 

stirred at 80 °C for 30 min. The reaction mixture was concentrated and dried under 

vacuum. The residue was purified with reversed phase HPLC using a C18 column and 

water/acetonitile as solvents as described above to yield 3.10 (50 mg, 30%). 

1H NMR (400 MHz, CD30D, 8 ppm): 8.02 (d, J= 7.9 Hz, 2H, H-6), 6.20 (dd, J= 5.4 

and 3.1 Hz, 2H, H-1 '), 6.10 (d, J = 7.9 Hz, 2H, H-5), 5.35-5.45 (m, lH, H-4'), 4.31-

4.54 (m, 4H, H-5' and H-5"), 3.54 (dd, J = 5.4 and 12.6 Hz, 2H, H-2"), 3.20-3.27 (m, 

2H, H-2'), 2.20-2.36 (m, 4H, CH2COO), 1.38-1.60 (m, 4H, CH2CH2COO), 1.12-1.32 

(m, 4H, suberate methylene); 13C NMR (CD30D, 100 MHz, 8 ppm): 174.78 

(C003TC), 160.63 (C-4 C=O), 148.60 (C-2 C=O), 144.99 (C-6), 94.80 (C-5), 88.01 

(C-1'), 85.45 (C-4'), 64.30 (C-5'), 38.30 (CH2COO), 34.38 (CH2CH2COO), 29.04 (C-

2'), 25.17 (suberate CH2); HR-MS (ESI-TOF) (m/z): C24H32N60sS2: calcd, 596.1723; 

found, 597.0920 [M +Ht, 1193.4381 [M +Ht. 
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3.3.2.2. Synthesis of Peptide-Nucleosides Conjugates (Peptides Containing one 

nucleoside and one Myristoyl Group) 

Several peptide conjugates of AZT, FLT, 3TC, and myristic acid were 

synthesized employing a PS3 automated peptide synthesizer and Fmoc solid-phase 

peptide synthesis using Fmoc-L-amino acid building blocks. The peptide-nucleoside 

conjugates were assembled on Wang resin solid support at room temperature. The 

building blocks, Fmoc-Glu(nucleoside)-OH and Fmoc-Ser(myristoyl)-OH, were 

synthesized from Fmoc-Glu(OH)-tBu and Fmoc-Ser-OH, respectively, as described 

below: 

Fmoc-Glu(3 '-fluoro-2 ',3 '-dideoxythymidine-5 '-yl)-OH (3.12) and Fmoc-Glu(3 '­

azido-2' ,3 '-dideoxythymidine-5 '-yl)-OH. Fmoc-Glu(OH)OtBu (5 g, 11.8 mmol), 

FLT or AZT (3.5 g, 14.1 mmol), and HBTU (6.67 g, 17.6 mmol) were dissolved in 

DMF (25 mL). DIPEA (5 mL, 38 mmol) was added to the solution and the reaction 

mixture was stirred at room temperature overnight. The solvent was removed at 

reduced pressure to yield crude Fmoc-Glu(3'-fluoro-2',3'-dideoxythymidine-5'­

yl)OtBu (3.11) or Fmoc-Glu(3'-azido-2',3'-dideoxythymidine-5'-yl)OtBu (3.13). 

3.11. HR-MS (ESI-TOF) (m/z): C34H38FN30 9: calcd, 651.2592; found, 652.1312 [M + 

Ht; 1303.2873. [2M + Ht; 3.13. HR-MS (ESI-TOF) (m/z): calcd, C34H3sN609; 

found,: 674.27 [M +Ht, 697.0440. [M +Na( 

TF A (20 rnL) was added to the reaction mixture containing 3.11 or 3.12. The reaction 

mixture was stirred for 1 h to remove t-butyl protecting group at C-terminal. TF A was 

136 



www.manaraa.com

removed at reduced pressure and the residue was purified with HPLC using a C1s 

column and water/acetonitile as a solvents using method as described above to yield 

3.12 and 3.14. 

3.12. Overall yield (5.0 g, 70%); 1H NMR (400 MHz, CD30D, 8 ppm): 7.78 (d, J = 

7.4 Hz, 2H, Fmoc Ar-H), 7.60-7.69 (m, 2H, Fmoc Ar-H), 7.35-7.42 (m, 3H, H-6, 

Fmoc Ar-H), 7.31 (dt, J = 7.4 and 3.3 Hz, 2H, Fmoc Ar-H), 6.23 (dd, J = 6.4 and 9.3 

Hz, lH, H-1'), 5.27 (dd, J= 5.9 and 53.3 Hz, lH, H-3'), 4.34-4.51 (m, SH, H-4', H-5", 

Glu CH( a), and Fmoc NHCOOCH2), 4.28 (dd, J= 5.9 and 9.1 Hz, lH, H-5'), 4.22 (t, J 

= 6.7 Hz, lH, Fmoc NHCOOCH2CH), 2.10-2.58 (m, 6H, Glu CH2CH2COO (p and y 

methylene), H-2", and H-2'), 1.87 (s, 3H, CH3); HR-MS (ESI-TOF) (m/z): 

C30H30FN30 9: calcd, 595.1966; found, 596.2122 [M +Ht, 1191.4197 [2M +Ht. 

3.14. Overall yield (5.2 g, 70%); 1H NMR (400 MHz, CD30D, 8 ppm): 7.78 (d, J = 

7.4 Hz, 2H, Fmoc Ar-H), 7.35-7.70 (m, 2H, Fmoc Ar-H), 7.44 (s, lH, H-6), 7.37 (t, J 

= 7.4 Hz, 2H, Fmoc Ar-H), 7.30 (t, J = 7.4 Hz, 2H, Fmoc Ar-H), 6.10 (t, J = 6.4 Hz, 

lH, H-1'), 4.15-4.45 (m, 7H, H-3', H-5', H-5", Glu-a-CH, Fmoc NHCOOCH2CH), 

4.05 (dd, J = 4.8 and 9.0 Hz, lH, H-4'), 2.52 (t, J = 7.2 Hz, 2H, Glu-CH2COO CP­

methylene), 2.32-2.48 (m, 2H, Glu-CH2CH2COO (y-methylene), 2.14-2.30 (m, lH, H-

2'), 1.90-2.05 (m, lH, H-2"), 1.85 (s, 3H, 5-CH3); 
13C NMR (CD30D, 100 MHz, 8 

ppm): 175.27 (COOH), 173.97 (COOAZT), 162.39 (C-4 C=O), 152.25 (C-2 C=O), 

145.40, 142.73 (Fmoc Ar-C), 137.85 (C-6), 128.95, 128.33, 126.42, 121.08 (Fmoc Ar­

C), 112.02 (C-5), 86.70 (C-1 '), 83.176 (C-4'), 68.16 (CH20CONH), 64.88 (C-5'), 
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62.15 (Glu CH(a), 54.57 ((C-3'), 37.88 (C-2'), 31.47 (Glu y-CH2), 27.99 (Glu ~-CH2), 

12.73 (5-CH3); HR-MS (ESI-TOF) (m/z): C30H30N609: calcd, 618.2074; found, 

619.5564 [M +Ht. 

Fmoc-Ser(O-Myristoyl)OH (3.15). Fmoc-Ser(OH)OH (5 g, 15.3 mmol) and DIPEA 

(1 o mL, 75 mmol) were dissolved in DMF (20 rnL). Myristic chloride (10 g, 23 mmol) 

was added to the solution. The reaction mixture was stirred for overnight. The solvent 

was removed at reduced pressure and the residue was purified using silica gel column 

chromatography using dichloromethane (DCM)/methanol (0-5%) as eluents. The 

compound was eluted at 5% methanol in DCM to yield 3.15 (5.3 g, 63%). 

1H NMR (400 MHz, CDCh, o ppm): 7.70 (d, J= 7.4 Hz, 2H, Fmoc Ar-H), 7.53 (d, J = 

6.9 Hz, 2H, Fmoc Ar-H), 7.34 (t, J= 7.4 Hz, 2H, Fmoc Ar-H), 7.25 (t, J = 7.4 Hz, 2H, 

Fmoc Ar-H), 5.50 (d, J = 8.0 Hz, serine CH(a)), 4.65-4.71 (m, lH, serine CH" (J3)), 

4.45 (dd, J = 3.9 and 11.4 Hz, lH, serine CH' (J3)) , 4.32-4.39 (m, 2H, Fmoc 

NHCOOCH2), 4.17 (t, J = 6.9 Hz, lH, Fmoc NHCOOCH2CH), 2.26 (t, J = 7.5 Hz, 

2H, CH2COO), 1.54 (t, J = 6.3 Hz, 2H, CH2CH2COO), 1.13-1.25 (br m, 20H, 

Methylene protons), 0.80 (t, J = 6.6 Hz, 3H, CH3) ; HR-MS (ESI-TOF) (m/z): 

C32Hi3N06: calcd, 537.309; found, 538.2673 [M +Ht, 1075.5442 [2M +Ht. 

Myristoyl-Glu(3'-fluoro-2',3'-dideoxythymidine-5'-yl)-Lys(myristoyl)OH [My­

Glu(FLT)-Lys(My)-OH, 3.16]. Fmoc-Lys(Mtt)-Wang resin (300 mg, 0.45 mmol/g) 

was swelled in DMF for 30 min and Fmoc-Glu(FLT)-OH (320 mg, 0.54 mmol), 

HBTU (200 mg, 0.54 mmol), and NMM (0.54 mmol) were added to the swelled resin 

suspension in DMF. The mixture was shaken overnight at room temperature. The resin 

138 



www.manaraa.com

was filtered and washed two times with DMF (10 mL). Fmoc deprotection was carried 

out using piperidine in DMF (20%,10 mL). The resin was washed with DMF (3 x 10 

mL). To the resin was added TFA:DCM mixture (5%, 10 mL) to remove methyltrityl 

protecting group (Mtt) at lysine side chain. The mixture was shaken for 1 h at room 

temperature. The resin was washed with DCM (3 x 10 mL) and DMF (10 mL) and 

swelled in DMF (10 mL). Myristic anhydride (100 mg, 1.08 mmol) and DIPEA (2 

mL, 15 mmol) were added to the swelled resin. The mixture was shaken for 2 h at 

room temperature. The resin was washed with DMF (2 x 10 mL). A mixture of 

TFA/anisole/water (95:2.5:2.5, 10 mL) was added to the resin and the mixture was 

shaken for 1 h. After filtration, the solution was concentrated and dried under reduced 

pressure. The crude peptide conjugates were purified with reversed phase HPLC using 

a C18 column and water/acetonitile as solvents as described above and were 

lyophilized to yield 3.16 (10 mg, 8.0%). 

HR-MS (ESI-TOF) (rn/z): C49Hs4FN50 10: calcd, 921.6202; found, 922.9989 [M +Ht, 

1845.9558 [2M +Ht. 

Acetyl-Glu(3'-fluoro-2',3'-dideoxythymidine-5'-yl)-P-Ala-Lys(myristoyl)OH [Ac­

Glu(FLT)-~Ala-Lys(My)-OH, 3.17] and Acetyl-Glu(3'-azido-2',3'­

dideoxythymidine-5'-yl)-~Ala-Lys(myristoyl)OH (Ac-Glu(AZT)-PAla-Lys(My)­

OH, 3.18]. The peptide was assembled on Fmoc-Lys(Mtt)-Wang resin (600 mg, 0.45 

rnmol/g) by Fmoc solid-phase peptide synthesis strategy on a PS3 automated peptide 

synthesizer at room temperature using Fmoc protected amino acids [Fmoc-P-Ala-OH 

(C + 1) and Fmoc-Glu(nucleoside)-OH (C + 2) (3.12 or 3.14, 1.08 mmol)]. HBTU 
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(1.08 mmol) and NMM (1.08 mmol) in DMF were used as coupling and activating 

reagents, respectively. Fmoc deprotection at each step was carried out using piperidine 

in DMF (20%). NH2-Glu(FLT)-~Ala-Lys(Mtt)-Wang resin or NH2-Glu(AZT)-~Ala­

K(Mtt)-Wang resin was transferred to the reaction vessel and swelled in DMF (2 mL) 

for 30 min. Acetic anhydride (2 mL) and DIPEA (2 mL, 15 mmol) were added to the 

mixture. The reaction was shaken at room temperature for 30 min to cap the N­

terminal with acetyl group. N-Acetylated resin was washed with DMF (2 x 1 O mL). 

To the resin was added TFA:DCM (5%, 10 mL). The mixture was shaken for 1 hat 

room temperature. The resin was washed with DCM (3 x 10 mL) and DMF (10 mL) 

and swelled in DMF (10 mL). Free amino group at lysine side chain was further 

myristoylated by adding myristic anhydride (100 mg, 1.08 mmol) and DIPEA (2 mL, 

15 mmol) to the swelled resin. The mixture was shaken for 2 h at room temperature. 

The resin was washed with DMF (3 x 10 mL). A mixture of TF A/anisole/water 

(95:2.5:2.5 v/v/v, 10 rnL) was added to the resin and the mixture was shaken for 1 h. 

After filtration, the solution was concentrated and dried under reduced pressure. The 

crude peptide conjugates were purified with reversed phase HPLC using a C18 column 

and water/acetonitile as solvents as described above and were lyophilized to yield 3.17 

and3.18. 

3.17. Overall yield (20 mg, 8%); 1H NMR (400 MHz, CD30D, o ppm): 7.48 (s, lH, 

FLT H-6 ), 6.28 (dd, J = 5.6 and 8.8 Hz, lH, FLT H-1' ), 5.29 (dd, J = 53.5 and 4.4 

Hz, lH, FLT H-3'), 4.20-4.70 (m, 6H, FLT H-4' and FLT H-5", Ser COCHNH 

(CH(a), Ser CH20 (CH(~), Glu COCHNH (CH(a)), 4.07 (dd, J= 3.9 and 17.8 Hz, lH, 
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FLT H-5'), 3.72-3.92 (m, 2H, Gly COCH2NH (CH(a)), 3.38-3.58 (m, 2H, P-Ala 

cH
2
NH), 2.24-2.64 (m, 8H, FLT H-2', FLT H-2", P-Ala CH2COO, Glu 

cH
2
CH2COO), 2.16 (t, J = 7.2 Hz, 3H, myristate CH2COO), 1.94-2.08 (m, 3H, Ac 

cH3), 1.88 (s, 3H, FLT 5-CH3), 1.52-1.66 (m, 2H, myristate CH2CH2COO), 1.22-1.38 

(br m, 20H, methylene protons), 0.90 (t, J = 6.3 Hz, 3H, myristate CH3); HR-MS 

(ESI-TOF) (m/z): C40H6sFN6011: calcd, 824.4695; found, 825.6640 [M + Ht, 

1651.2282 [2M +Ht. 

3.18. Overall yield (20 mg, 8%); 1H NMR (400 MHz, CD30D, 8 ppm): 7.48 (s, lH, 

H-6 AZT), 6.14 (t, J= 6.6 Hz, lH, AZT H-1'), 4.20-4.70 (m, 6H, AZT H-5', AZT H-

5", AZT H-3', Ser COCHNH (CH(a), Ser CH20 (CH(p), Glu COCHNH) (CH(a), 4.07 

(dd, J = 4.9 and 8.9 Hz, lH, AZT H-4'), 3.84-4.05 (m, 2H, Gly COCH2NH (CH( a)), 

3.44 (dd, J= 6.6 and 12.5 Hz, 2H, P-Ala CH2NH), 2.10-2.66 (m, lOH, FLT H-2', FLT 

H-2", P-Ala CH2COO, Glu CH2CH2COO, myristate CH2COO), 1.92-2.09 (m, 3H, Ac 

CH3 ), 1.89 (s, 3H, 5-CHrAZT), 1.52-1.72 (m, 2H, myristate-CH2CH2COO), 1.24-

1.50 (br m, 20H, methylene protons), 0.90 (t, J = 6.5 Hz, 3H, myristate CH3); HR-MS 

(ESI-TOF) (m/z): C40H6sN90 11 : calcd, 847.4804; found, 848.9452 [M + H( 

Acetyl-Ser(myristoyl)-P-Ala-Glu{3 '-fluoro-2 ',3 '-dideoxythymidine-5 '-yl)-Gly-OH 

[Ac-Ser(My)-PAla-Glu(FL T)Gly-OH, 3.19) and Acetyl-Ser(myristoyl)-P-Ala­

Glu(3 '-azido-2 ',3 '-dideoxythymidine-5 '-yl)-Gly-OH [ Ac-Ser(My)-PAia­

Glu(AZT)Gly-OH, 3.20). The peptide was assembled on Fmoc-Gly-Wang resin (600 

mg, 0.45 mmol/g) by Fmoc solid -phase peptide synthesis strategy using Fmoc 
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protected amino acids [Fmoc-Glu(nucleoside)-OH (C + 1) (3.12 or 3.14), Fmoc-,B­

Ala-OH (C + 2) and Fmoc-Ser(Myristoyl)-OH (C + 3) (3.15), each 1.08 mmol]. 

HBTU (1.08 mmol) and NMM (1.08 mmol) in DMF were used as coupling and 

activating reagents, respectively. Fmoc deprotection at each step was carried out using 

piperidine in DMF (20%). NH2-Ser(My)-,BAla-Glu(FLT)Gly-Wang resin or NH2-

Ser(My)-,BA1a-Glu(AZT)-Gly-W ang resin was transferred to the reaction vessel and 

swelled in DMF (2 mL) for 30 min. Acetic anhydride (2 mL) and DIPEA (2 mL, 15 

mmol) were added to the mixture. The reaction was shaken at room temperature for 30 

min to cap N-terminal with acetyl group. N-Acetylated resin was washed DMF (2 x 10 

mL). To the resin was added the peptide was cleaved from the resin by a mixture of 

TFA/anisole/water (95:2.5:2.5 v/v/v, 10 mL) and the mixture was shaken for 1 h. After 

:filtration, the solution was concentrated and dried under reduced pressure. The crude 

peptide conjugates were purified with reversed phase HPLC using a C18 column and 

water/acetonitile as solvents as described above and were lyophilized to yield 3.19 and 

3.20. 

3.19. Overall yield (20 mg, 8%); HR-MS (ESI-TOF) (m/z): C39H61FN6013: calcd, 

841.4281 ; found, 842.0071 [M +Ht, 1683.8930 [2M +Ht. 

3.20. Overall yield (20 mg, 8 %); HR-MS (ESI-TOF) (m/z): C39H61N9013: calcd, 

863.4389; found, 864.9022 [M +Ht, 1729.8398 [2M +Ht. 
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3.3.2.3. Synthesis of Dinucleoside- and Trinucleoside Glutamic Acid Derivatives 

With or Without Myristoyl Moiety Glutamate-nucleoside conjugates containing 

more than one nucleoside with or without myristoyl group were synthesized by using 

solution phase synthesis. 

Fmoc-Glu{FLT)-3TC-DMTr (3.21) Compounds 3.12 (500 mg, 0.84 mmol), 2.12 

(535 mg, 1 mmol), and HBTU (650 mg 1.7 mmol) were dissolved in DMF (IO mL). 

DIPEA (5 mL, 37 mmol) was added to the solution and the reaction mixture was 

stirred overnight at room temperature. The solvent was removed and the residue was 

dried under reduced pressure. The residue was purified with reversed phase HPLC 

using a C18 column and water/acetonitile as solvents as described above and was 

lyophilized to yield 3.21 (820 mg, 75%). 

1H NMR (400 MHz, CDCh, 5 ppm): 8.99 (s, lH, FLT NH), 7.74 (d, J = 7.5 Hz, lH, 

Fmoc Ar-H), 7.55 (d, J = 7.6 Hz, IH, 3TC H-6), 7.38 (t, J = 7.5 Hz, Fmoc Ar-H), 

7.06-7.33 (m, 13H, DMTr Ar-H, Fmoc Ar-H, and FLT H-6), 6.76-6.87 (m, 4H, DMTr 

Ar-H protons), 6.34 (m, lH, 3TC H-1 '), 6.14-6.22 (m, lH, FLT H-1 '), 5.64 (d, J= 7.6 

Hz, lH, 3TC H-5), 5.05-5.27 (m, 2H, FLT H-3' and 3TC H-4'), 4.24-4.45 (m, 8H, 3TC 

H-5', 3TC H-5", Fmoc NHCOOCH2CH, FLT H-4', FLT H-5', FLT H-5"), 4.17 (t, J = 

6.7 Hz, lH, Glu HN-CH-COO CH(a)), 3.75 and 3.78 (twos, 6H, DMTr CH30), 3.46 

(dd, J= 11.8 and 5.3 Hz, lH, 3TC H-2''), 2.97 (dd, J= 11.8 and 5.3 Hz, IH, 3TC H-

2'), 1.97-2.67 (m, 6H, FLT H-2', FLT H-2", and Glu CH2CH2COO), 1.86 (s, 3H, 5-

CH3); 13C NMR. (CDCh, 100 MHz, 0 ppm): 172.00 (FLT COO), 171.25 (3TC coo), 

165.06 (3TC C-4), 163.50 (FLT C-4 C=O), 158.69 (DMTr Ar-C-OCH3), 156.00 (3TC 
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DMTr Ar-C), 111.41 (FLT C-5), 95.17 (3TC C-5), 93.20 (J= 178.3 Hz, FLT C-3'), 

87.64 (3TC C-1'), 86.01 (FLT C-1'), 83.16 (3TC C-4'), 82.16 (J= 26.9 Hz, FLT C-4'), 

81.69 (DMTr Ph3C-NH), 70.34 (Fmoc CI--h-OCONH), 67.15 (FLT C-5'), 65.76 (3TC 

C-5'), 55.28 (DMTr OCH3), 53.40 (CH(a)), 47.04 (Fmoc CH-CH2-0CONH), 38.16 

(FLT C-2'), 37.36 (3TC C-2'), 29.86, (Glu y-CH2), 27.16 (Glu ~-CH2), 12.64 (FLT 5-

CI-h); HR-MS (ESI-TOF) (m/z): Cs9Hs1FN6013S: calcd, 1108.3688; found, 1109.4804 

[M +Ht, 1131.4395[M +Nat, 1147.4739 [M +Kt, 2218.5704 [2M +Ht. 

NHi-Glu(FLT)-3TC-DMTr (3.22). Compound 3.21 (800 mg, 0.72 mmol) was 

dissolved in THF (10 mL). Piperidine (7.18 µI, 0.072 mmol) and 1-octanethiol (7.3 

mmol, 10 mM solution in THF, 0.73 mL) were added to the reaction mixture. The 

mixture was stirred for 1 h at room temperature. The solvent was removed and the 

residue was dried under reduced pressure. The residue was purified with reversed 

phase HPLC using a C18 column and water/acetonitile as solvents as described above 

and lyophilized to yield 3.22 (300 mg, 50%). 

I H NMR (400 MHz, CDCh, 8 ppm): 7.44 (d, J= 7.8 Hz, lH, 3TC H-6), 7.25-7.33 (m, 

4H, DMTr Ar-H), 7.18-7.21 (m, 2H, DMTr Ar-Hand FLT H-6), 7.12 (d, J= 8.8 Hz, 

4H, DMTr Ar-H), 6.84 (d, J= 8.8 Hz, 4H, DMTr Ar-H), 6.20 (dd, J= 5.7 and 8.6 Hz, 

lH, FLT H-1 '), 6.13 (t, J = 5.2 Hz, lH, 3TC H-1 '), 5.33 (dd, J = 4.0 and 6.0 Hz, lH, 

3TC H-4'), 5.10-5.31 (m, 2H, FLT H-3' and 3TC H-5), 4.28-4.45 (m, 4H, 3TC H-5', 

3TC H-5", FLT H-5', and FLT H-5"), 4.18-4.26 (m, lH, FLT H-4'), 4.07 (t, J= 6.6 

Hz, lH, HN-CH(CH2)-COO (CH(a)), 3.77 (s, 6H, DMTr-CH30), 3.41 (dd, J = 11.9 

and 5.2 Hz, lH, 3TC H-2"), 3.05 (dd, J= 11.9 and 5.2 Hz, lH, 3TC H-2'), 2.10-2.66 
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(rn, 6H, FLT H-2', FLT H-2", and Glu CH2CH2COO), 1.85 (s, 3H, 5-CH3); 
13C NMR 

(CDCh, 100 MHz, o ppm): 172.56 (FLT COO), 169.13 (3TC COO), 165.55 (3TC C-

4 FLT C-4 C=O), 159.68 (DMTr Ar-C-OCH3), 159.16 (3TC C-2 C=O), 151.51 (FLT 
' 

C-2 C=O), 145.56 (3TC C-6), 136.96 (FLT C-6), 130.77, 130.72, 129.30, 129.09 

128.86, 128.41 , 127.35, 114.33, 113.70 (DMTr Ar-C), 111.90 (FLT C-5), 96.74 (3TC 

C-5), 94.11(J = 177.9 Hz, FLT C-3'), 88.58 (3TC C-1'), 86.72 (FLT C-1'), 82.92 (J = 

26.6 Hz, FLT C-4' ), 82.78 (3TC C-4'), 71.72 (DMTr Ph3C-NH), 67.15 (FLT C-5'), 

64.53 (3TC C-5'), 55.66 (DMTr OCH3), 52.36 (CH( a)), 37.85 (J = 21.1 Hz, FLT C-

2'), 37.27 (3TC C-2'), 29.70, (Glu y-CH2), 25.80 (Glu ~-CH2), 12.73 (FLT 5-CH3); 

HR-MS (ESI-TOF) (m/z) : C44H41FN6011S: calcd, 886.3008; found, 887.4078 [M + 

Ht, 1817.4315 [2M +Ht. 

C13H27-CONH-Glu(FLT)-3TC (3.24). Compound 3.22 (100 mg, 0.12 mmol) and 

myristic anhydride (100 mg, 0.24 mmol) were dissolved in DMF (10 mL). DIPEA (5 

mL, 37 mmol) was added to the solution. The mixture was stirred for 2 h at room 

temperature. The solvent was removed under reduced pressure to yield C13H21-CONH-

Glu(FLT)-3TC-DMTr (3.23) . 

3.23. HR-MS (ESI-TOF) (m/z): C58H73FN60 12S: calcd, 1096.4991; found, 1097.2874 

[M +Ht, 2193 .8167 [2M +Ht. 

Compound 3.23 was dissolved in acetic acid (80% in water, 10 mL) and was heated at 

80 °C for 30 min to remove DMTr protection. Acetic acid was removed under reduced 

pressure and the residue was purified with reversed phase HPLC using a C1s column 
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and water/acetonitrile as solvents as described above and was lyophilized to yield 3.24 

(40 mg, 45%). 

3.24. 1H NMR (400 MHz, CDCh, 8 ppm): 8.13 (d, J= 7.8 Hz, lH, 3TC H-6 ), 7.45 (s, 

lH, FLT H-6), 6.28 (dd, J= 3.6 and 5.4 Hz, lH, FLT H-1'), 6.22 (dd, J= 5.7 and 8.8 

Hz, lH, 3TC H-1'), 6.17 (d, J = 7.8 Hz, lH, 3TC H-5 ), 5.43 (dd, J= 3.2 and 4.9 Hz, 

lH, 3TC H-4' ), 5.25 (dd, J = 5.2 and 53 .7 Hz, lH, FLT H-3'), 4.59 (dd, J = 4.9 and 

12.4 Hz, lH, 3TC H-5" ), 4.31-4.55 (m, 4H, 3TC H-5', FLT H-5', FLT H-5", FLT H-

4'-), 4.27 (dd, J= 3.0 and 10.8 Hz, lH, Glu HN-CH-COO CH(a)), 3.54-3.65 (m, 2H, 

3TC H-2' and H-2"), 2.11-2.65 (m, 8H, FLT H-2', FLT H-2", myristate CH2COO, and 

Glu CH2CH2COO), 1.86 (s, 3H, 5-CH3), 1.58 (t, J = 6.8 Hz, 2H, CH2CH2COOH), 

1.20-1.35 (br m, 20H, methylene protons), 0.85 (t, J = 6.6 Hz, 3H, CH3); 
13C NMR 

(CD30D, 100 MHz, 8 ppm): 175.92, 172.97 (FLT COO, 3TC COO), 172.13 (CONH), 

165.61 (3TC C-4 ), 160.80 (FLT C-4 C=O), 151.57 (3TC C-2 C=O), 147.96 (FLT C-2 

C=O), 145.21 (3TC C-6 ), 136.97 (FLT C-6 ), 111.34 (FLT C-5 ), 97.92 (3TC C-5), 

93.27 (J= 179.4 Hz, FLT C-3' ), 87.99 (3TC C-1'), 86.32 (FLT C-1' ), 82.19 (J= 26.6 

Hz, FLT C-4' ), 81.68 (3TC C-4' ), 64.96 (FLT C-5'), 64.14 (3TC C-5'), 54.23 

(CH(a)), 37.59 (J= ·20.8 Hz, FLT C-2'), 36.96 (3TC C-2'), 36.40 (CH2COO), 31.93, 

26.34, 30.34, 30.21, 30.09, 29.91, 29.76, 29.69, 26.80, 23.16 (methylene carbons, Glu 

y-CH2, Glu ~-CH2) , 13.88 (myristate CH3), 12.10 (FLT 5-CH3); HR-MS (ESI-TOF) 

(mlz): C31HssFN6010S: calcd, 794.3684; found, 795.1608 [M +Ht, 1590.3674 [2M + 

Ht, 
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CHrCONH-Glu(FLT)-3TC (3.26). Compound 3.22 (100 mg, 0.12 mmol) and acetic 

anhydride (2 mL, 20 mmol) were dissolved in DMF (10 mL). DIPEA (5 mL, 37 

mmol) was added to the solution. The reaction mixture was stirred for 2 h at room 

temperature. The solvent was removed under reduced pressure to yield CH3-CONH­

Glu(FLT)-3TC-DMTr (3.25). 

3.25. HR-MS (ESI-TOF) (m/z): C46lit9FN6012S: calcd, 928.3113; found, 929.1423 [M 

+Ht 

Compound 3.25 was dissolved in acetic acid (80% in water, 10 mL) and was heated at 

80 °C for 30 min to remove DMTr protection. Acetic acid was removed under reduced 

pressure and the residue was purified with reversed phase HPLC using a C18 column 

and water/acetonitile as solvents as described above and was lyophilized to yield 3.26 

(30 mg, 40%). 

3.26. 1H NMR (400 MHz, CD30D, 8 ppm): 8.13 (d, J= 7.8 Hz, lH, 3TC H-6), 7.46 

(s, lH, FLT H-6), 6.28 (dd, J= 3.7 and 5.4 Hz, lH, FLT H-1'), 6.23 (dd, J= 5.7 and 

8.8 Hz, lH, 3TC H-1'), 6.16 (d, J= 7.8 Hz, lH, 3TC H-5), 5.44 (dd, J= 3.1and4.9 

Hz, lH, 3TC H-4'), 5.25 (dd, J = 5.2 and 53.7 Hz, lH, FLT H-3'), 4.60 (dd, J = 4.9 

and 12.4 Hz, lH, 3TC H-5"), 4.32-4.55 (m, 4H, 3TC H-5', FLT H-5', FLT H-5", and 

FLT H-4'), 4.26 (dd, J = 3.3 and 11.4 Hz, lH, Glu HN-CH-COO CH( a)), 3.71 (dd, J 

= 5.7 and 12.6 Hz, lH, 3TC H-2"), 3.58 (dd, J = 5.7 and 12.6 Hz, lH, 3TC H-2'), 

2.11-2.63 (m, 6H, FLT H-2', FLT H-2", and Glu CH2CH2COO), 1.96 (s, 3H, acetyl 

CH3), 1.86 (s, 3H, 5-CH3); 13C NMR (CD30D, 100 MHz, 8 ppm): 173.71, 173.65 

(FLT COO, 3TC COO), 172.86 (CONH), 161.46 (3TC C-4), 161.21 (3TC C-2 C=O), 

152.33 (FLT C-2 C=O), 146.00 (3TC C-6 ), 137.69 (FLT C-6), 112.06 (FLT C-5), 
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95.23 (J = 176.4 Hz, FLT C-3' ), 95.14 (3TC C-5), 88.73 (3TC C-1' ), 87.13 (FLT C-1' 

), 85.55 (3TC C-4' ), 84.03 (J= 26.0 Hz, FLT C-4'), 65.69 (FLT C-5' ), 64.99 (3TC C-

5' ), 53.03 (CH(a)), 38.64 (FLT C-2' ), 38.42 (3TC C-2'), 31.04 (Glu y-CH2), 27.55 

(Glu ~-CH2), 22.48 (acetyl CH3), 12.78 (FLT 5-CH3); HR-MS (ESI-TOF) (m/z): 

c25H31 FN6010S: calcd, 626.1806; found, 627.6073 [M +Ht, 1254.9359 [2M +Ht. 

Fmoc-Glu(FLT)-AZT (3.27). Compound 3.12 (500 mg, 0.84 mmol), AZT (269 mg, 1 

mmol), and HBTU (650 mg 1.7 mmol) were dissolved in DMF (10 mL). DIPEA (5 

mL, 37 mmol) was added to the solution and the reaction mixture was stirred over 

night. The solvent was removed and the residue was dried under reduced pressure. The 

residue was purified with reversed phase HPLC using a C18 column and 

water/acetonitile as solvents as described above and was lyophilized to yield 3.27 (620 

mg, 85%). 

1H NMR (400 MHz, CDC13, o ppm): 9.24 (s, lH, FLT NH), 9.09 (s, lH, AZT NH), 

7.75 (d, J= 7.2 Hz, lH, Fmoc Ar-H), 7.57 (d, J= 3.6 Hz, lH, Fmoc Ar-H), 7.38 (t, J= 

7.2 Hz, Fmoc Ar-H), 7.29 (t, J= 7.2 Hz, 2H, Fmoc Ar-H), 7.15 (s, lH, FLT H-6), 7.07 

(s, lH, AZT H-6), 6.14 (t, J= 8.1 Hz, lH, FLT H-1' ), 5.80 (t, J= 6.9 Hz, lH, AZT H-

1'), 5.17 (dd, J= 2.0 and 55.6 Hz, lH, FLT H-3'), 4.23-4.60 (m, 6H, AZT H-5', AZT 

H-5", AZT H-3', FLT H-4', FLT H-5', and FLT H-5"), 4.19 (t, J= 6.7 Hz, lH, Glu 

HN-CH-COO CH(a)), 3.95-4.05 (m, lH, AZT H-4' ), 2.16-2.69 (m, 8H, AZT H-2', 

AZT H-2", FLT H-2', FLT H-2", and Glu CH2CH2COO), 1.88 (br s, 6H, FLT 5-CH3 

and AZT 5-CH3 ); 
13C NMR (CDC13, 100 MHz, o ppm): 172.3, 171.4 (FLT COO, 

AZT COO), 163.85, 163.72 (FLT C-4 C=O, AZT C-4 C=O), 156.23 (Fmoc OCONH), 
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150.10, 149.98 (AZT C-2 C=O and FLT C-2 C=O), 143.74, 143.55, 141.3l(Fmoc Ar­

C), 137.23, 135.88 (AZT C-6, FLT C-6), 127.88, 127.10, 125.05, 125.00, 120.08, 

(Fmoc Ar-C), 111.37, 111.28 (AZT C-5, FLT C-5), 93.23 (J = 177.8 Hz, FLT C-3' ), 

87.82 (FLT C-1' ), 86.53 (AZT C-1' ), 82.21(J=26.3 Hz, FLT C-4' ), 81.72 (AZT C-

4' ), 68.00 (Fmoc CH2-0CONH), 63.82 (FLT C-5'), 60.29 (AZT C-5'), 53.48, 53.31 

(AZT C-3', CH(a)), 47.04 (Fmoc CH-CH2-0CONH), 37.58 ( J= 20.1 Hz, FLT C-2'), 

36.94 (AZT C-2'), 29.72 (Glu y-CH2), 25.60 (Glu ~-CH2), 12.57, 12.43 (AZT 5-CH3, 

FLT 5-CH3); HR-MS (ESI-TOF) (m/z): C40H41FNs012: calcd, 844.2828; found, 

845.0241 [M + H( 

NH2-Glu(FLT)-AZT (3.28). Compound 3.27 (610 mg, 0.72 mmol) was dissolved in 

THF (IO mL). Piperidine (7.18 µl, 0.072 mmol) and 1-octanethiol (7.3 mmol, 10 mM 

solution in THF, 0.73 mL) were added to the reaction mixture. The mixture was stirred 

at room temperature for 1 h. The solvent was removed and the residue was dried under 

reduced pressure. The residue purified with reversed phase HPLC using a C18 column 

and water/acetonitile as solvents as described above and lyophilized to yield 3.28 (225 

mg, 50%). 

1
H NMR (400 MHz, CD30D, o ppm): 7.44 (s, lH, FLT H-6), 7.38 (s, lH, AZT H-6 ), 

6.22 (dd, J= 8.1 Hz, lH, FLT H-1'), 6.02 (t, J= 6.9 Hz, lH, AZT H-1' ), 5.23 (dd, J= 

2.0 and 55.6 Hz, lH, FLT H-3'), 4.20-4.55 (m, 6H, AZT H-5', AZT H-5", AZT H-3', 

FLT H-4', FLT H-5', and FLT H-5"), 4.15 (t, J = 6.7 Hz, lH, Glu HN-CH-COO 

CH(a)), 3.98-4.04 (m, lH, AZT H-4' ), 2.16-2.69 (m, 8H, AZT H-2', AZT H-2", FLT 

H-2', FLT H-2", CH2CH2COO), 1.87 (br s, 6H, FLT 5-CH3, AZT 5-CH3); 13C NMR 
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(CD30D, 100 MHz, 8 ppm): 173.29, 170.17 (FLT COO, AZT COO), 166.40, 163.72 

(FLT C-4 C=O, AZT C-4 C=O), 152.33 , 152.19 (AZT C-2 C=O, FLT C-2 C=O), 

139.13, 137.89 (AZT C-6, FLT C-6), 114.03, 112.08 (AZT C-5, FLT C-5), 95.07 (J= 

176.7 Hz, FLT C-3'), 88.12 (FLT C-1'), 87.34 (AZT C-1'), 83.86 (J= 27.3 Hz, FLT C-

4'), 82.72 (AZT C-4'), 66.90 (FLT C-5'), 61.99 (AZT C-5'), 53.23, 52.28 (AZT C-3', 

CB( a)), 38.26 (J = 21.2 Hz, FLT C-2'), 37.10 (AZT C-2'), 30.14 (Glu y-CH2), 26.63 

(Glu ~-CH2), 12.73, 12.53 (AZT 5-CH3, FLT 5-CH3); HR-MS (ESI-TOF) (m/z): 

c25H31 FN8010: calcd, 622.2147; found, 622.9532 [M +Ht, 1244.9406 [2M + H( 

C13H27-CONH-Glu(FLT)-AZT (3.29). Compound 3.28 (75 mg, 0.12 mmol) and 

myristic anhydride (100 mg, 0.24 mmol) were dissolved in DMF (10 rnL). DIPEA (5 

mL, 37 mmol) was added to the solution. The mixture was stirred for 2 h at room 

temperature. The solvent was removed under reduced pressure and the residue was 

purified with reversed phase HPLC using a C18 column and water/acetonitile as 

solvents as described above and was lyophilized to yield 3.29 (40 mg, 40%). 

1H NMR (400 MHz, CD30D, 8 ppm): 7.45, 7.44 (two s, 2H, AZT H-6, FLT H-6), 

6.23 (dd, J= 8.9 and 5.6 Hz, lH, FLT H-1'), 6.09 (t, J= 6.7 Hz, lH, AZT H-1'), 5.24 

(dd, J = 5.0 and 53.6 Hz, lH, FLT H-3'), 4.32-4.48 (m, 6H, AZT H-5', AZT H-5", 

AZT H-3', FLT H-4', FLT H-5', and FLT H-5"), 4.22 (dd, J=3.8 and 11.4 Hz, lH, Glu 

HN-CH-COO CH(a)), 4.06 (dd, J = 4.8 and 8.6 Hz, lH, AZT H-4'), 2.15-2.60 (m, 

lOH, AZT H-2', AZT H-2", FLT H-2', FLT H-2", myristate CH2COO, Glu 

CH2CH2COO), 1.87 (s, 6H, FLT 5-CH3, AZT 5-CH3), 1.58 (t, J = 6.6 Hz, 2H, 

CH2CH2COO), 1.23-1.33 (br m, 20H, methylene protons), 0.87 (t, J= 6.7 Hz, 3H, 5-
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cH3); 
13C NMR (CDCl3, 100 MHz, 8 ppm): 173.78, 172.37, 171.56 (FLT COO, AZT 

COO, CONH), 164.01 (FLT C-4 C=O and AZT C-4 C=O), 150.27 (AZT C-2 C=O, 

FLT C-2 C=O), 137.14, 135.77 (AZT C-6, FLT C-6), 111.37 (AZT C-5, FLT C-5), 

93.27 (J= 179.4 Hz, FLT C-3'), 87.56 (FLT C-1'), 86.32 (AZT C-1'), 82.19 (J= 26.6 

Hz, FLT C-4'), 81.68 (AZT C-4'), 63.83 (FLT C-5'), 60.33 (AZT C-5'), 51.48, 51.35 

(AZT C-3', CH(a)), 37.59 (J = 20.8 Hz, FLT C-2'), 36.96 (AZT C-2'), 36.39 

(CH2COO), 34.14, (Glu y-CH2), 31.93 (Glu ~-CH2), 30.04, 29.90, 29.83, 29.66, 29.60, 

29.51 , 29.46, 29.36, 29.31, 29.16, 27.27 25.59, 24.97, 22.70 (methylene carbons), 

14.15 (My-CH3) 12.73, 12.53 (5-CH3-AZT, 5-CH3-FLT); HR-MS (ESI-TOF) (m/z): 

C39H57FNs011: calcd, 832.4131; found, 832.8583 [M +Ht, 1665.8057 [2M + H( 

CH3-CONH-Glu(FLT)-AZT (3.30). Compound 3.28 (75 mg, 0.12 mmol) was 

dissolved in DMF (10 mL). DIPEA (5 mL, 37 mmol) and acetic anhydride (2 mL, 20 

mmol) were added to the solution. The reaction mixture was stirred for 2 h at room 

temperature. The solvent was removed under reduced pressure and the residue was 

purified with reversed phase HPLC using a C18 column and water/acetonitile as 

solvents as described above and was lyophilized to yield 3.30 (30 mg, 35%). 

1
H NMR (400 MHz, CD3CN, 8 ppm): 7.45, 7.43 (two s, 2H, AZT H-6, FLT H-6), 

6.23 (dd, J= 8.8 and 5.6 Hz, lH, FLT H-1'), 6.09 (t, J= 6.6 Hz, lH, AZT H-1'), 5.24 

(dd, J = 5.0 and 53.6 Hz, lH, FLT H-3'), 4.33-4.47 (m, 6H, AZT H-5', AZT H-5", 

AZT H-3', FLT H-4', FLT H-5', FLT H-5"), 4.22 (dd, J =3.2 and 11.0 Hz, lH, Glu 

HN-CH-COO CH(a)), 4.07 (dd, J= 4.6 and 8.8 Hz, lH, AZT H-4'), 2.11-2.61 (m, 8H, 

AZT H-2', AZT H-2", FLT H-2', FLT H-2", and Glu CH2CH2COO), 1.96 (s, 3H, 
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acetyl CH3), 1.87 (s, 6H, FLT 5-CH3, AZT 5-CH3); 13C NMR (CD30D, 100 MHz, 8 

ppm): 172.17, 172.10, 171.40 (FLT COO, AZT COO, CONH), 164.93 , 164.82 (FLT 

C-4 C=O, AZT C-4 C=O), 150.93, 150.73 (AZT C-2 C=O, FLT C-2 C=O), 136.57, 

136.07 (AZT C-6, FLT C-6), 110.55 (AZT C-5, FLT C-5), 93.69 (J = 176.6 Hz, FLT 

C-3'), 85.80 (FLT C-1'), 85.51 (AZT C-1'), 82.42 (J = 26.0 Hz, FLT C-4'), 81.55 

(AZT C-4'), 64.31 (FLT C-5'), 60.94 (AZT C-5'), 51.75 (AZT C-3', CH(a)), 36.96 (J 

= 20.6 Hz, FLT C-2'), 36.14 (AZT C-2'), 29.39 (Glu y-CH2), 26.04 (Glu P-CH2), 20.88 

(acetyl CH3), 12.73, 12.53 (AZT 5-CH3, FLT 5-CH3); HR-MS (ESI-TOF) (m/z): 

C37H55FN6010S: calcd, 794.3684; found, 795 .1608 [M +Ht, 1590.3674 [2M +Ht. 

Fmoc-Glu(AZT)-3TC-DMTr (3.31). Compound 3.14 (520 mg, 0.84 mmol), 2.12 

(535 mg, 1 mmol), and HBTU (650 mg 1.7 mmol) were dissolved DMF (10 mL). 

DIPEA (5 mL, 37 mmol) was added to the solution and to the reaction mixture was 

stirred overnight at room temperature. The solvent was removed and the residue was 

dried reduced pressure. The residue purified with reversed phase HPLC using a C18 

column and water/acetonitile as solvents as described above and was lyophilized to 

yield 3.31 (840 mg, 87%). 

HR-MS (ESI-TOF) (m/z): C59H57FN60 13S: calcd, C59H57N9013S; found, 1131.3797 

[M +Ht, 1132.3485 [M +Ht, 2265.1887 [2M +Ht. 

NH2-Glu(AZT)-3TC-DMTr (3.32). Compound 3.31 (815 mg, 0.72 mmol) was 

dissolved in THF (1 O rnL). Piperidine (7.18 µl , 0.072 mmol) and 1 and 1-octanethiol 

(7.3 mmol, 10 mM solution in THF, 0.73 rnL) were added to the reaction mixture. The 
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mixture was stirred for 1 hat room temperature. The solvent was removed at reduced 

pressure and the residue was purified with HPLC using a C18 column and 

water/acetonitile as a solvent as described above to yield 3.32 (325 mg, 50%). 

1H NMR (400 MHz, CDCh, cS ppm): 8.04 (d, J= 7.8 Hz, lH, 3TC H-6 ), 7.02-7.47 

(m, lOH, DMTr Ar-Hand AZT H-6 ), 6.82 (d, J = 8.8 Hz, 4H, DMTr Ar-H), 6.18-

6.35 (m, lH, 3TC H-1 '), 6.15 (d, J = 7.8 Hz, lH, 3TC H-5), 6.07 (t, J = 6.5 Hz, lH, 

AZT H-1 '), 5.30-5.55 (m, lH, 3TC H-4'), 4.66 (dd, J = 6.4 and 12.1 Hz, lH, 3TC H-

5'), 4.57 (dd, J= 3.2 and 12.1 Hz, lH, 3TC H-5"), 4.26-4.46 (m, 3H, AZT H-3', AZT 

H-5', and AZT H-5"), 4.21 (t, J = 6.6 Hz, lH, Glu HN-CH-COO CH(a)), 3.93-4.07 

(m, lH, AZT H-4'), 3.75 (s, 6H, DMTr CH30), 3.63-3.70 (m, lH, 3TC H-2"), 3. 75 

(dd, J= 12.3 and 5.5 Hz, lH, 3TC H-2'), 2.67 (t, J= 7.0 Hz, 2H, CH2COO), 2.07-2.56 

(m, 4H, AZT H-2', AZT H-2", Glu CHCH2CH2COO), 1.85 (s, 3H, AZT 5-CH3); 
13C 

NMR (CDCh, 100 MHz, cS ppm): 173.20 (AZT COO), 169.95 (3TC COO), 166.25 

(3TC C-4, AZT C-4 C=O), 161.54 (DMTr Ar-C-OCH3), 160.03 (3TC, C-2 C=O), 

148.70 (AZT C-2 C=O), 145.48 (3TC C-6), 138.34 (AZT C-6), 137.37, 131.25, 

129.32, 128.7, 127.69, 114.00 (DMTr Ar-C), 111.86 (AZT C-5), 95.32 (3TC C-5), 

88.88 (AZT C-1'), 87.15 (3TC C-1'), 84.02 (AZT C-4'), 82.93 (3TC C-4'), 67.30 (AZT 

C-5'), 65.16 (3TC C-5'), 62.06 (DMTr OCH3), 55.69 (AZT C-3'), 53.03 (CH(a)), 

37.48 (AZT C-2'), 37.38 (3TC C-2'), 30.15 (Glu y-CH2), 26.53 (Glu P-CH2), 12.54 

(AZT 5-CH3); HR-MS (ESI-TOF) (m/z): C44H47N90 11 S; calcd, 909.3116; found, 

910.4154 [M +Ht, 1821.5154 [2M +Ht. 
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c
13

H2,-CONH-Glu(AZT)-3TC (3.34). Compound 3.32 (100 mg, 0.12 mmol) and 

myristic anhydride (100 mg, 0.24 mmol) were dissolved in DMF (10 mL). DIPEA (5 

mL, 37 mmol) was added to the solution. The mixture was stirred for 2 h at room 

temperature. The solvent was removed under reduced pressure to yield C13H2rCONH­

Glu(AZT)-3TC-DMTr (3.33). 

3.33. HR-MS (ESI-TOF) (m/z): CssH13N9012S: calcd, 1119.5099; found, 1120.3183 

[M+Ht. 

Acetic acid (80% in water, 10 mL) was added to compound 3.33. The mixture was 

heated at 80 °C for 30 min to remove DMTr protection. Acetic acid was removed 

under reduced pressure and the residue was purified with reversed phase HPLC using 

a C18 column and water/acetonitile as solvents as described above to yield 3.34 (35 

mg, 50%). 

3.34. 1H NMR (400 MHz, CDCh, 8 ppm): 7.91 (d, J= 7.8 Hz, lH, 3TC H-6), 7.17 (s, 

lH, AZT H-6), 6.20 (dd, J = 3.7 and 5.2 Hz, lH, 3TC H-1 '), 6.14 (d, J = 7.8 Hz, lH, 

3TC H-5), 5.94 (t, J= 6.5 Hz, lH, AZT H-1'), 5.31 (dd, J= 4.3 and 3.6 Hz, lH, 3TC 

H-4'), 4.32-4.58 (m, 4H, 3TC H-5', 3TC H-5", AZT H-3'), 4.21-4.29 (m, 3H, AZT H-

5', AZT H-5", Glu HN-CH-COO (CH( a)), 3.94 (dd, J = 3.7 and 5.1 Hz, lH, AZT H-

4'), 3.47 (dd, J= 5.2 and 12.6 Hz, lH, 3TC H-2"), 3.13 (dd, J= 3.7 and 12.6 Hz, lH, 

3TC H-2'), 2.07-2.51 (m, 8H, AZT H-2', AZT H-2", myristate CH2COO, and Glu 

CH2CH2COO), 1.81 (s, 3H, AZT 5-CH3), 1.40-1.58 (m, 2H, CH2CH2COOH), 1.04-

1.27 (br m, 20H, methylene protons), 0.78 (t, J = 7.0 Hz, 3H, CH3); 13C NMR 

(CD30D, 100 MHz, 8 ppm): 175.92, 172.79 (AZT COO, 3TC COO), 171.70 (CONH), 

164.82 (3TC C-4), 160.74 (AZT C-4 C=O), 150.67 (3TC C-2 C=O), 148.15 (AZT C-2 
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c==O), 143.44 (3TC C-6), 136.83 (AZT C-6), 111.32 (AZT C-5), 94.90 (3TC C-5), 

87.07 (AZT C-1 '), 86.45 (3TC C-1 '), 84.35 (AZT C-4'), 81.86 (3TC C-4'), 64.38 (AZT 

C-5'), 63.75 (3TC C-5'), 60.80 (AZT C-3'), 51.54 (CH(a)), 38.22 (AZT C-2'), 37.05 

(CH2COO), 36.24 (3TC C-2'), 32.11, 30.11, 29.99, 29.83, 29.55, 29.47, 29.40, 25.80 

(methylene carbons), 26.77 (Glu y-CH2), 22.85 (Glu ~-CH2), 14.19 (myristate CH3), 

12.40 (AZT 5-CH3); HR-MS (ESI-TOF) (m/z): C31HssN9010S: calcd, 817.3793; 

found, 818.2535 [M +Ht, 1636.0917 (2M +Ht. 

CH3-CONH-Glu(AZT)-3TC (3.36). To compound 3.32 (110 mg, 0.12 mmol) in 

DMF (10 mL) was DIPEA (5 mL, 37 mmol) and acetic anhydride (2 mL, 20 mmol). 

The reaction mixture was stirred for 2 h at room temperature. The solvent was 

removed under reduced pressure to yield CH3-CONH-Glu(AZT)-3TC-DMTr (3.35). 

3.35. HR-MS (ESI-TOF) (m/z): C46H49N9012S: calcd, 951.3221; found, 952.2062 [M 

+Ht, 1903.9995 [2M + H( 

Acetic acid (80% in water, 10 mL) was added to compound 3.35. The reaction mixture 

was heated at 80 °C to remove DMTr protection. Acetic acid was removed under 

reduced pressure and the residue was purified with reversed phase HPLC using a C1s 

column and water/acetonitile as a solvents as described above to yield 3.36 (35 mg, 

55%). 

3.36. 1H NMR (400 MHz, CD30D, o ppm): 8.02 (d, J = 7.9 Hz, lH, 3TC H-6), 7.33 

(s, lH, FLT H-6), 6.20-6.30 (m, lH, 3TC H-1'), 6.03-6.16 (m, 2H, AZT H-1' and 3TC 

H-5), 5.42 (t, J = 3.7 Hz, lH, 3TC H-4'), 4.43-4.62 (m, 3H, 3TC H-5", 3TC H-5', and 
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AZT H-3'), 4.25-4.35 (m, 3H, AZT H-5', AZT H-5", Glu HN-CH-COO (CH(a)), 4.02 

(dd, J= 4.5 and 9.1 Hz, lH, AZT H-4'), 3.57 (dd, J= 5.5 and 12.4 Hz, lH, 3TC H-2"), 

3.24 (dd, J = 3.4 and 12.4 Hz, lH, 3TC H-2'), 2.11-2.53 (m, 6H, AZT H-2', AZT H-

2", Glu CH2CH2COO), 1.96 (s, 3H, acetyl CH3), 1.87 (s, 3H, 5-CH3); 13C NMR 

(CD30D, 100 MHz, 8 ppm): 173.22, 172.50 (AZT COO, 3TC COO), 172.24 (CONH), 

165.41 (3TC C-4), 161.32 (AZT C-4 C=O), 151.49 (3TC C-2 C=O), 148.53 (AZT C-2 

C=O), 144.96 (3TC C-6), 137.32 (AZT C-6), 111.56 (AZT C-5), 95.03 (3TC C-5), 

87.92 (AZT C-1'), 86.03 (3TC C-1'), 84.92 (AZT C-4'), 82.40 (3TC C-4'), 65.19 (AZT 

C-5'), 64.42 (3TC C-5'), 61.36 (AZT C-3'), 52.36 (CH(a)), 38.29 (AZT C-2'), 37.36 

(3TC C-2'), 30.65 (Glu y-CH2), 27.06 (Glu ~-CH2), 22.60 (acetyl CH3), 12.60 (FLT 5-

CH3); HR-MS (ESI-TOF) (m/z): C2sH31N9010S: calcd, 649.1915; found, 650.2228 [M 

+Ht, 1299.0050 [2M +Ht. 

FLT-Succ-NH-Glu(AZT)-3TC (3.37). Compound 3.32 (110 mg, 0.12 mmol), 

DIPEA (5 mL, 37 mmol), and FLT-Succinate (100 mg, 0.30 mmol) were dissolved in 

DMF (10 mL). The reaction mixture was stirred for 2 h at room temperature. The 

solvent was removed under reduced pressure. Acetic acid (80% in water, 10 mL) was 

added to the residue. The reaction mixture was heated at 80 °C to remove DMTr 

protection. Acetic acid was removed under reduced pressure and the residue was 

purified with HPLC using a C18 column and water/acetonitile as a solvent as described 

above to yield 3.37 (55 mg, 50 %). 
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1H NMR (400 MHz, CD3CN, 8 ppm): 8 10.7 (s, lH, NH), 9.59 (s, 2H, NH), 7.97 (d, J 

::: 7.6 Hz, lH, 3TC H-6), 7.77 (s, lH, NH), 7.36 (s, lH, FLT H-6), 7.29 (s, lH, AZT 

H-6), 6.96 (d, lH, NH), 6.17-6.26 (m, 2H, 3TC H-1' and FLT H-1'), 6.14 (d, J = 7.6 

Hz, lH, 3TC H-5), 6.06 (t, J= 6.3 Hz, lH, AZT H-1'), 5.40 (t, J= 3.6 Hz, lH, 3TC H-

4'), 5.24 (dd, J = 4.8 and 53.7 Hz, lH, FLT H-3'), 4.16-4.59 (m, 9H, 3TC H-5', 3TC 

H-5", FLT H-5', FLT H-5", FLT H-4', AZT H-5', AZT H-5", AZT H-3', Glu HN-CH­

COO (CH( a)), 4.00 (dd, J = 6.6 Hz, lH, AZT H-4'), 3.56 (dd, J = 11.9 and 5.2 Hz, 

lH, 3TC H-2"), 3.24 (dd, J = 11.9 and 5.2 Hz, lH, 3TC H-2'), 2.05-2.66 (m, 12H, 

Succinate OOCCH2CH2CON, FLT H-2', FLT H-2", AZT H-2', AZT H-2", and Glu 

CH2CH2COO), 1.83 (s, 6H, FLT 5-CH3 and AZT 5-CH3); 13C NMR (CD3CN, 100 

MHz, 8 ppm): 174.50, 173.95, 172.95 (3TC COO, FLT COO, AZT COO), 166.38 

(3TC C-4), 161.62 (AZT C-4 C=O and FLT C-4 C=O), 152.38, 152.27, 148.86 (AZT 

C-2, FLT C-2, 3TC C-2 C=O), 145.83, 138.25, 137.50 (FLT C-6, AZT C-6, 3TC C-6), 

112.22, 112.04 (FLT C-5, AZT C-5), 95.43 (J= 176.5 Hz, FLT C-3'), 96.42 (3TC C-

5), 88.78 (3TC C-1'), 86.85 (FLT C-1'), 86.81 (AZT C-1'), 86.81 (3TC C-4'), 84.11 (J 

== 26.0 Hz, FLT C-4'), 83.16 (AZT C-4'), 65.93, 65.05, 64.99 (3TC C-5', FLT C-5', 

AZT C-5'), 62.20 (AZT C-3'), 52.64 (CH(a)), 38.79 (3TC C-2'), 38.48 (J= 19.0 Hz, 

FLT C-2 '), 37.76 (AZT C-2'), 31.86, 31.06, (succinate two-CH2), 30.24 (Glu y-CH2), 

27.71 (Glu P-CH2), 12.89, 12.75 (AZT 5-CH3 and FLT 5-CH3); HR-MS (ESI-TOF) 

(m/z): C37H44FN 11 0 15S: calcd, 933 .2723; found, 934.2864 [M +Ht, 1867.6791 [2M 

+Ht, 
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3.4. Results and discussion 

3.4.1. Chemistry 

3.4.1.l. Unsymmetrical and Symmetrical 5',5'-Dinucleoside Conjugates of 

Succinic Acid or Suberic Acid 

Several 1,4-dinucleoside succinate and 1,8-dinucleoside suberate ester 

derivatives were synthesized (Schemes 3.1-3.3). 

Unsymmetrical dinucleoside succinate derivatives were synthesized in two­

step synthesis. First, nucleoside succinates, FLT succinate (3.1) and AZT succinate 

(3.2), were synthesized by the reaction of FLT or AZT with succinic anhydride in 

presence of pyridine as the base (Scheme 3 .1 ). FLT succinate was then reacted with 

AZT in the presence of HBTU and DIPEA as a base and 3TC-DMTr (2.12) in the 

presence of HBTU and DIPEA, followed by acetic acid to give FLT-AZT 1,4-

succinate (3.3) and FLT-3TC 1,4-succinate (3.4), respectively. Similarly, AZT­

succinate was reacted with 3TC-DMTr (2.12) followed by DMTr removal to give 

AZT-3TC 1,4-succinate (3.5). 

Symmetrical dinucleoside 1,4-succinate derivatives of AZT (3.6) and FLT 

(3. 7) were synthesized by reaction of nucleosides with succinyl chloride in the 

presence of DMAP as the base (Scheme 3.2). Symmetrical dinucleoside 1,8-suberate 

were synthesized by reaction of two equivalents of nucleosides, FLT, AZT, or DMTr-

3TC, with one equivalent of suberic acid in presence of HBTU and DIPEA. Acetic 

acid cleavage was used to deprotect the DMTr group in 3TC conjugate (Scheme 3.3). 
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FLT R= F 
AZT R=N3 

Succinic anhydride, Pyridine 

AZT, HBTU, DIPEA 

3.3 R = F 

I. 3TC-DMTr, HBTU , DIPEA 
2. Acetic Acid 

3.4 R =F 
3.5 R =N3 

Scheme 3.1. Synthesis of unsymmetrical 5',5'-dinucleoside 1,4-succinate derivatives 

of FLT, AZT, and 3TC. 

!-oH 
~OH 

0 

DMAP, Benzene 

R 3.6 R = N3 
3.7 R = F 

Scheme 3.2. Synthesis of symmetrical 5',5'-dinucleoside 1,4-succinate derivatives of 

FLT and AZT. 
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1. HBTU , DIPEA, DMF 

2. Acetic acid 

3.10 R = C6H12 

Scheme 3.3. Synthesis of symmetrical 5',5'-dinucleoside 1,8-suberate derivatives of 

FLT, AZT, and 3TC. 

3.4.1.2. Synthesis of Peptide-Nucleoside Conjugates (Peptides Containing One 

Nucleoside and One Myristoyl Group). 

Peptide-nucleoside derivatives (3.16-3.20) containing one nucleoside and one 

myristoyl moiety attached in the peptide side chains were synthesized in three steps: 

(i) Fmoc-building block synthesis; (ii) Peptide assembly on the resin using automated 

peptide synthesizer; and (iii) Deprotection followed by acylation of the free amino 

groups. Step-by-step synthetic procedures are shown in the schemes 3.6-3.8. 

Fmoc-Glu(nucleoside)-OH were synthesized by reaction of Fmoc-Glu(OH)-

tBu with the corresponding nucleoside (AZT or FLT) in the presence of HBTU and 

DIPEA, followed by the deprotection of tBu group with TFA (Scheme 3.4). 
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R 

R =NJ AZT 
R = F FLT 

Fmoc-Glu(OH)OtBu, HBTU 

DIPEA, DMF 

TFA:Water (95:5) .. . 

R 
3.12 R = F 
3.14 R =NJ 

3.11 R = F 
3.13 R =NJ 

Scheme 3.4. Synthesis of Fmoc-Glu(FLT)-OH (3.12) and Fmoc-Glu(AZT)-OH (3.14). 

Fmoc-Ser(OMys)OH (3.15), a fatty acid building block, was synthesized by 

the reaction of Fmoc-Ser(OH)-OH with myristoyl chloride in the presence of DIPEA 

(Scheme 3.5). 

0 
H II 

Fmoc-N-C(H-c-oH 

Myristoyl Chloride, DIPEA, DMF CH2 
I 

Oyc1JH21 

0 

3.15 

Scheme 3.5. Synthesis of Fmoc-Ser(OMys)OH (3.15). 
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Dipeptide My-Glu(FLT)-Lys(My)-OH (3.16) was synthesized by assembling 

Fmoc protected building block, Fmoc-Glu(FLT)-OH, on Fmoc-Lys(Mtt)-Wang resin 

by using Fmoc solid phase peptide synthesis strategy at room temperature Lysine side 

chain protecting group Mtt was removed by adding 5% TF A to the resin NH2-

Glu(FLT)-Lys(Mtt)-Wang resin. The free amino groups were myristoylated by using 

myristic anhydride and the peptide was cleaved from the resin by using 95% TF A 

cocktail to yield 3.16 (Scheme-3.6). 

For the synthesis of peptide-nucleoside conjugates 3.17 and 3.18, the peptide 

was assembled on Fmoc-Lys(Mtt)-Wang resin by Fmoc solid-phase peptide synthesis 

strategy on a PS3 automated peptide synthesizer at room temperature using Fmoc 

protected amino acids [Fmoc-f3-Ala-OH and Fmoc-Glu(nucleoside)-OH (3.12 or 

3.14)], followed by acetylation. After acidic removal of lysine Mtt group, the N­

terminal was myrisotylated using myristic anhydride in the presence of DIPEA as the 

base to afford 3.17 and 3.18 (Scheme 3.7). 
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1. Piperidine (20%) 
2. Fmoc-Glu(FL T)-OH, HBTU, NMM 
3. Piperidine (20%) 
4. TFA, DCM (95:5) 

I. Myristic anhydride, DIPEA, DMF 
2. TFA, H20, Anisole, (95:2.5:2.5) 

F 

3.16 

Scheme 3.6. Solid phase synthesis of My-Glu(FLT)-Lys(My)-OH (3.16). 

i. Piperidine 20% 
ii. HBTU + Fmoc-BA!a-OH, NMM 
iii. HBTU + Fmoc-Glu(OFLT)-OH or 

Fmoc-Glu(OAZT)-OH, NMM 
iv. DIPEA +Acetic anhydride 
v. TFA (5%) in DCM 
vi. DIPEA + Myristic anhydride 
vii. TFA (95%) 

F 

Scheme 3. 7. Solid phase synthesis of peptide-nucleoside conjugates 3.17 and 3.18. 
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Solid-phase reaction of building blocks, [Fmoc-Glu(nucleoside )-OH (3.12 or 

3.14), Fmoc-~-Ala-OH, and Fmoc-Ser(Myristoyl)-OH (3.15) on Fmoc-Gly-Wang 

resin, followed by cleavage afforded 3.19 and 3.20 (Scheme 3.8). 

i . piperidine (20%) . 
ii. HBTU + Fmoc-Glu(OFLT)-OH 
or Fmoc-Glu(OAZT)-OH 0 C H 
iii. HBTU + Fmoc-IlAla-OH ~H H/ "y" 13 27 
iv. HBTU + Fmoc-Ser(OMy}-OH HO~ Ny;; NO II 
v. DIPEA+ Acetic anhydride N NH 
vi. TF A: Water:Anisole 
-------- o H C(H2 ~ Jl o A

0 
_JH2 l /NH 

01 N~O 
o'l o I 

X=F3.19 p 
X= N3 3.20 x 

Scheme 3.8. Synthesis of Peptide-nucleoside conjugates 3.19 and 3.20. 

3.4.1.3. Synthesis of Dinucleoside- and Trinucleoside Glutamic Acid Derivatives 

with or without Myristoyl Moiety 

The synthesis of glutamate esters containing two to three nucleosides, with or 

without myristic acid, was accomplished by solution phase synthesis. The conjugates 

were synthesized by reaction of an appropriate building block, such as Fmoc-

Glu(FLT)-OH (3.12) or Fmoc-Glu(AZT)-OH (3.14) as at free a-carboxylic acid with 

other nucleosides, such as 3TC-DMTr or AZT, in the presence of HBTU and DIPEA 

afforded 3.21, 3.27 or 3.31. In the next step, Fmoc deprotection was accomplished in 

the presence of piperidine and octanethiol to afford 3.22, 3.28, or 3.32. Octanethiol 

was used in excess as a scavenger since the conjugates were not stable to piperidine or 

other bases like DMAP. The use of piperidine in proportions more than 0.1 equivalent 

or the increase in the cleavage reaction time resulted in the loss of nucleoside from 

side chain of glutamate at &-carboxylic acid. After the removal of Fmoc protection 
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from amino group, N-terminal was reacted with myristic anhydride or acetic anhydride 

in the presence of DIPEA. Deprotection of DMTr group was accomplished with acetic 

acid reaction. This strategy provided the synthesis of the glutamate ester containing 

two different nucleosides with or without myristic acid (3.24, 3.26, 3.29, 3.30, 3.34, 

and 3.36). Myristoyl and acetyl capping at N-terminal was carried out to provide 

peptides with high and low lypophilicity, respectively (Schemes 3.9 and 3.10). 

Finally, a glutamate conjugate containing three different nucleosides attached 

was synthesized (Scheme 3.10). In this molecule, the first, second, and third 

nucleosides were attached to C-terminal, to the side chain, amino group, respectively. 

A glutamate conjugate containing two different nucleosides, 3TC and AZT, at a and 8-

carboxylic acids (NH2-Glu(AZT)-3TC-DMTr) (3.32) was first reacted with FLT­

succinate in the presence of DIPEA followed by acetic acid cleavage to afford a 

glutamate conjugate containing three nucleosides (3.37). 
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0 
HN-< 

H 9 o==< ~y 
Fmoc-N-CHC-OH 0 r 

9H2 ~NH H 9 N
3 

C(H2 l .. A Fmoc-N-CHC-0 o 

Oy\d=O o N 0 -------- cc: HH22 ~I 7H AZT, HBTU, DIPEA, DMF l .. ~ 

F ~~0 o[ 0 

3.27 p 3.12 

F 

R 

3.29 C13H27 

3.30 CH3 
Scheme 3.9. Synthesis of Glutamic acid esters of nucleosides (AZT and FLT) 
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3.12, R 1 = F 
3.14, R1 = N3 

N-<O 

DMToNH-CN~ 

o \~s 
II I 

H2N-9HC- O 0 

9H2 ~NH 
9H2 l .. A 

Piperidine, Octanethiol 
09=~0 O N 0 1. [R2CO]i0, DIPEA, DMF 

2. Acetic Acid 
~~~~~~~~-----

R 1 

3.22, R 1 =F 
3.32, R1 =N3 

1. FL T-Succinate, HBTU, DIPEA, DMF 
2. Acetic Acid 

N-<O 

H,N--C,,N~ 

o 0 ~s 
HN~ HN-9~-0 0 

o~NJ 0~0 6~: "(NH 

b(o \JA0 

3.37 N3 

Compound RI 

3.23 F 

3.24 F 

3.25 F 

3.26 F 

3.33 N3 

3.34 N3 

3.35 N3 

3.36 N3 

Ri R3 

C13H21 DMTr 

C13H21 H 

CH3 DMTr 

CH3 H 

C13H21 DMTr 

C13H21 H 

CH3 DMTr 

CH3 H 

Scheme 3.10. Synthesis of Glutamic acid esters ofnucleosides (AZT, FLT and 3TC). 
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3.4.2 Biological evaluation 

All the compounds were tested for their anti-HIV activity and cytotoxicity profile. 

Tables 3.2-3.4 illustrate the anti-HIV-I activities of the selected compounds and the 

corresponding physical mixtures against cell-free virus (IIIB) strain. The compounds 

are currently under evaluation against other strains of virus. 

Table 3.2. Anti HIV Activity of peptide-nucleoside conjugates 

CTSa Cell-free HIV-1 
Chemical Name 

(IIIB)b Compound (µg/mL) 
a (µg/mL) (µM) 

A.ZT 3'-azido-2',3'-dideoxythymidine (AZT) > 100 9.2 34.4 

FLT 3 '-fluoro-2' ,3 '-deoxythymidine (FLT) >100 0.2 0.8 

3.19 FL T(Glutamyl)-myrsitoyllysine >100 8.7 10.4 

3.16 FLT(myristoylglutamyl)-mysritoyllysine >100 24.7 26.8 

3.17 Myristoylserine-FL T(glutamyl)glycine >100 9.3 11.1 

3.18 Myristoylserine-AZT(glutamyl)glycine >100 54.5 63.1 

aCytotoxicity assay; cViral entry inhibition assay (lymphocytotropic strain); Data represent EC50 (50% 

effective concentration). Single-round infection assay where compounds, virus and cells were incubated 

for 2 hours. Cells were then washed and cultured for additional 48h. Infection was measured by HIV­

L TR driven Galactosidase expression. 

As shown in Table 3.2, all the peptide-nucleoside conjugates (3.16-3.19) displayed 

poor anti-HIV activity (EC50 > 10 µM when compared to FLT (EC50 = 0.8 µM). 

Myristoylated peptide-AZT conjugate 3.18 was almost two fold less active than AZT. 

Peptide conjugates were nearly 13-79 folds less active than FLT. The results indicate 

that the peptides may not be an appropriate scaffold for the attachment of nucleosides 

and attachment of myristic acid did not improve the ant-HIV profile of the 
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nucleosides. This may be due to the low cellular uptake of compounds containing 

peptide backbone. 

The anti-HIV activities for glutamate esters of two different nucleosides were 

evaluated against monocytotropic stain of virus and compared with the physical 

mixture of the corresponding nucleosides with or without myristic acid (Table 3.3). 

The data showed improved anti-HIV activity for molecules containing myristic acid 

when compared to the molecules without the fatty acid. Glutamate ester of FLT and 

3TC with myristic acid (3.24) exhibited 8.5-fold higher activity than the corresponding 

conjugate without myristic acid (3.26). Furthermore, compound 3.24 was the most 

active conjugate among glutamic ester of two nucleosides. However, the anti-HIV 

activity for all the compounds was less than that of FLT. 

Surprisingly, the physical mixtures of nucleosides and glutamic acid with 

myristic acid showed higher potency than the corresponding conjugates. This result 

indicates that attachment of nucleosides to the amino acid backbone is deleterious, 

possibly because of poor cellular uptake. 

In general, the presence of the myristic acid in the conjugates or physical 

mixtures improved the anti-HIV activity. The possible reason for the better activity 

could be the improved lypophilicity, which ultimately results in higher cellular uptake 

of the active compounds and higher solubility of the physical mixtures in the presence 
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of myristic acid in tested solutions. More investigations are required to confirm these 

hypotheses. 

Table 3.3. Dinucleoside-Glutamic Acid Derivatives with or without Myristoyl 

Moiety 

Cell-free IDV-1 
Chemical Name CT Sa 

Compound 
{µg/mL)3 

(IIIB)b 

(µg/mL) µM 

AZT 3'-azido-2',3'-dideoxythymidine (AZT) >100 9.2 34.4 

FLT 3'-fluoro-2',3'-deoxythymidine (FLT) >100 0.2 0.8 

2',3'-dideoxy-3'-thiacytidine 
3TC >100 7.5 32.7 

(lamivudine, 3TC) 

3.26 FLT(acetylglutamyl)-3TC >100 10.7 17.1 

3.24 FLT(mysristoylglutamyl)-3TC >100 1.6 2.0 

3.38 FLT+ 3TC + Glutamic acid >100 0.6 

FLT+ 3TC + Glutamic acid+ 
3.39 >100 0.3 

Myristic acid 

3.30 FLT(acetylglutamyl)-AZT >100 9.0 13 .5 

3.29 FLT(mysristoylglutamyl)-AZT >100 2.0 2.4 

3.40 FLT +AZT+ Glutamic acid >100 1.0 

FLT + AZT + Glutamic acid+ 
3.41 >100 0.3 

Myristic acid 

3.36 AZT(acetylglutamyl)-3TC >100 7.8 12.0 

3.34 AZT(mysristoylglutamyl)-3TC >100 4.9 6.0 

3.42 AZT+ 3TC + Glutamic acid >100 1.7 

AZT+ 3TC + Glutamic Acid+ 
3.43 >100 1.9 

Myristic Acid 
a 
Cytotoxicity assay; 0 Viral entry inhibition assay (lymphocytotropic strain); Data represent ECso (50% 

effective concentration). Single-round infection assay where compounds, virus and cells were incubated 
for 2 hours. Cells were then washed and cultured for additional 48h. Infection was measured by HIV-
LTR driven Galactosidase expression. 
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Table 3.4 displays the anti-HIV activity of a glutamate derivative with three 

different nucleosides (3.37). Compound 3.37 showed 35-fold higher anti-HIV activity 

that AZT and 3TC,, but had a comparable activity to FLT against IIIB strain of virus 

ECso = 0.8 µM. Compound 3.37 was > 10 folds better active than the corresponding 

molecule with two nucleosides (3.26) indicating that the addition of three nucleosides 

to the glutamate improves the anti-HIV activity. Compound 3.37 exhibited 4-17 times 

better anti-HIV activity when compared with disubstituted succinate derivatives of 

AZT and FLT (3.6 and 3. 7). 

The activity of 3.37 was also compared to the corresponding physical mixtures 

either with or without myristic acid (Table 3.4). The data showed higher anti-HIV 

activity for the physical mixture 3.45 than 3.37. Physical mixture containing FLT, 

AZT, 3TC, and glutamic acid (3.45) showed comparable activity to 3.37. Replacing 

FLT with FL T-succinate in the physical mixture (3.46) resulted in decrease in anti­

HIV activity by 2 fold, possibly because of slow hydrolysis of FL T-succinate to FLT. 

This data is consistent with our earlier results suggesting that glutamate and peptides 

are not appropriate scaffolds for improving anti-HIV profile. 

Addition of myristic acid in equivalent ratio to the physical mixture (3.46) 

improved the activity by three fold in comparison with 3.37 and the physical mixture 

3.45. These data were consistent with those obtained for the physical mixtures of two 

nucleosides and myristic acid described above. 
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Table 3.4. Anti HIV Activity of glutamic acid ester of three different Nucleosides in 
comparison with succinate derivatives of nucleosides 

Cell-free IDV-1 
Chemical Name CT Sa 

Compound 
µg/mL. 

(IIIB) 

µg/mL µM 

AZT 3'-azido-2',3'-dideoxythymidine (AZT) >100 9.2 34.4 

FLT 3 '-fl uoro-2' ,3 '-deoxythymidine (FLT) >100 0.2 0.8 

3TC 2',3'-dideoxy-3'-thiacytidine (3TC) >100 7.5 32.7 

3.6 AZT-succinate-AZT >100 8.6 13.9 

3.7 FL T-succinate-FL T >100 2.1 3.7 

3.37 FLT-Succinate-AZT(glutamyl)-3TC >100 0.9 0.96 

FLT-Succinate +AZT+ 3TC + Glutamic 
3.44 >100 1.8 

acid 

3.45 FLT+ AZT+ 3TC + Glutamic acid >100 0.8 

FLT+ AZT+ 3TC + Glutamic acid+ 
3.46 >100 0.3 

Myristic acid 

aCytotoxicity assay; cviral entry inhibition assay (lymphocytotropic strain); Data represent EC50 (50% 

effective concentration). Single-round infection assay where compounds, virus and cells were incubated 

for 2 hours. Cells were then washed and cultured for additional 48h. Infection was measured by HIV-

L TR driven Galactosidase expression. 

3.5. Conclusions 

Three classes of mono- di-, or trinucleoside conjugated on multivalent 

scaffolds (e.g., polycarboxylic acids, amino acids, and peptides) were synthesized with 

the expectation to improve the cellular uptake profile of the nucleosides, to exert 

synergistic effect by delivering different ant-HIV nucleosides at the same time to the 

infected cells, and to generate broad-spectrum anti-HIV agents with higher barrier to 

drug resistance. 
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Peptides or glutamate conjugated with myristic acid and nucleosides exhibited 

higher anti-HIV activities when compared with those substituted only with 

nucleosides. Increasing the number of anti-HIV nucleosides to 2 or 3 on the peptide 

chain enhanced the anti-HIV potency. Physical mixtures of nucleosides with amino 

acids and fatty acids used in the conjugation also showed significantly higher potency. 

The presence of one myristic acid in the conjugates or physical mixtures improved the 

anti-HIV activity, but addition of two myristic acids to the conjugates was not 

beneficial . 

Glutamate-nucleoside derivatives showed higher anti-HIV activity than 

dinucleoside succinate derivatives. The glutamate conjugate with three different 

nucleosides (3.37) was found to be the most potent compound in three classes of 

compounds evaluated here. Compound 3.37 had higher anti-HIV activity than AZT 

and 3TC, and showed comparable activity to FLT (EC50 = 0.8 µM). Although 

glutamate conjugates containing two nucleosides exhibited higher activity than AZT 

and 3TC, but they were less active than FLT. Presence of myristic acid in the glutamic 

acid conjugates and their corresponding physical mixtures improved the anti-HIV 

activity. 

The advantages of these compounds will be more clearly defined with further 

evaluation against multiple drug resistant strains. Selected compounds are currently 

under further biological evaluations for their broad-spectrum anti-HIV properties. 
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4.1. Abstract 

Reported solution-phase methods for the synthesis of 3'-fluoro-3'-deoxythymidine 

(FLT) are cumbersome, require purification of intermediates, and include several 

protecting/deprotecting steps. To circumvent these problems, a solid-phase strategy 

was designed for the synthesis of FLT. Thyrnidine was immobilized on trityl resin via 

the 5'-hydroxyl group. The subsequent mesylation of the free 3'-hydroxyl group in the 

presence of methanesulfonyl chloride afforded the polymer-bound 3'-0-

mesylthymidine. Nucleophilic substitution of the mesyl moiety by hydroxyl group in 

the presence of sodium hydroxide produced the polymer-bound threothymidine. 

Fluorination with diethylarninosulfur trifluoride followed by acidic cleavage of the 

polymer-bound FLT in the presence of trifluoroacetic acid afforded FLT. 

4.2. Introduction 

3'-Fluoro-3'-deoxythymidine (FLT, alovudine) is a nucleoside analogue 

structurally related to 3'-azido-3'-deoxythymidine (AZT), a commercially available 

anti-human immunodeficiency virus type 1 (HIV-1) drug. FLT has a substitution of 

fluorine for the hydroxyl group at the 3' position of the ribose ring of thymidine, and 

has been reported to be one of the most active inhibitors of HIV in vitro. FLT is up to 

10-fold more potent than AZT in vitro (Pan et al., 1992, Kong et al. , 1992) and is at 

least 10 times more active than AZT in monkeys infected with suruan 

immunodeficiency virus (Lundgren et al., 1991). Further investigations of this 

compound (Matthes et al., 1987, Cheng et al., 1987) showed that FLT-5'-triphosphate 

(FLT-TP) is a potent and selective inhibitor ofHIV-1 reverse transcriptase. 
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mv isolates with mutations resulting in multidrug resistance against all 

currently available reverse transcriptase inhibitors including AZT had no evidence of 

cross resistance to FLT (Kim et al., 1994). American Cyanamid Co discontinued the 

development of FLT in 1994 because of the observed hematological toxicity (Hoshi et 

al., 1994). However, Medivir continued to test FLT for the treatment of patients with 

multidrug-resistant HIV infection. The phase Ila clinical trials of FLT was 

successfully completed in July 2002. All patients underwent treatment without any 

serious side effects (Calvez et al., 2002, Rusconi, 2003). FLT is currently undergoing 

further clinical tests. 

Recently 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) has been proposed as a 

new marker for imaging tumor proliferation by positron emission tomography (PET) 

(Seitz et al., 2002, Wagner et al., 2003). The introduction of 18F at the ribose rather 

than labelling the nucleotide with 18F enhanced the metabolic stability of the marker 

(Shields et al., 1998). [18F]FLT was predominantly taken up by proliferating cells. 

Further phosphorylation of [18F]FLT by thymidine kinase 1 (TK-1) resulted in 

intracellular trapping of the metabolite, [18F]FLT-monophosphate (Shields et al., 1998, 

Wodarski et al., 2000). 

The synthesis of FLT in solution phase has been carried out by using several 

protecting and deprotecting steps (Herdewijn et al., 1987, Sahlberg et al., 1992, Hager 

et al., 1992, Kumar et al., 2004, Yun et al., 2003). These reactions are cumbersome 

and the intermediates need to be purified in each step. Furthermore, the overall yield is 
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not satisfactory. Because of revival of research interest for using FLT as anti-HIV 

agent or as a marker in tumor imaging by PET, there is a need for an alternative facile 

and effective synthesis of this compound. We designed a solid-phase strategy for the 

synthesis of FLT using unprotected thymidine to circumvent some of the problems 

associated with the solution-phase methods. 

4.3. Materials and Methods 

4.3.1. Materials 

All the chemicals and solvents were purchased from fisher scientific. Trityl 

resin was purchased from Novabiochem. All reactions were carried out in Bio-Rad 

polypropylene columns by shaking and mixing using a Glass-Col small tube rotator in 

dry conditions at room temperature unless otherwise stated. Trityl chloride resin (1.6 

mmol/g) was purchased from Novabiochem. Other chemicals and reagents were 

purchased from Sigma-Aldrich Chemical Co. (Milwaukee, WI). The chemical 

structure of FLT was confirmed by nuclear magnetic resonance spectrometry (1H 

NMR, 13C NMR) on a NMR spectrometer ( 400 MHz) and a high-resolution PE 

Biosystems Mariner API time-of-flight mass spectrometer. 

4.3.2. Synthesis 

Polymer-bound thymidine (4.3). The reaction vessel containing trityl chloride resin 

(4.2, 1.6 mmol/g, 0.36 rnmol, 225 mg), thymidine (4.1, 350 mg, 1.44 mmol) and 

anhydrous pyridine (10 rnL) was shaken at room temperature for 48 h. The resin was 

collected by filtration and washed with DMF (2 x 25 rnL), DCM (2 x 25 mL), and 
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anhydrous MeOH (2 x 25 mL), respectively, and dried under vacuum to give 4.3 (272 

mg, 91 % yield). IR (cm-1
): 3382 (0-H), 3056 (N-H), 3019 (N-H), I683 (C=O amide), 

I654 (C=O amide). 

Polymer-bound 3'-0-mesylthymidine (4.4). Methanesulfonyl chloride (I66 µL, 2.14 

mmol) was added to swelled resin 3 (272 mg) in dry pyridine (10 rnL). The reaction 

mixture was shaken for 48 h at room temperature. The resin was collected by filtration 

and washed with DMF (2 x 25 rnL), DCM (2 x 25 rnL), and anhydrous MeOH (2 x 25 

mL), respectively. The resin was dried under vacuum to afford 4.4 (290 mg, 98% 

yield). IR (cm-1
): 3056 (N-H), 30I9 (N-H), I687 (C=O amide), I654 (C=O amide), 

1356 (S02), I I 73 (S02). 

The completion of reaction was confirmed by cleaving a small amount of resin 

4.4 with 2% TF A in DCM. The spectral properties were identical with those of 3'-0-

mesylthyrnidine. HR-MS (ESI-TOF) (m/z): CuH16N20 7S calcd, 320.3 I 89; found, 

321.2275 [M +Ht, 343.2270 [M +Nat. 

Polymer-bound threothymidine (4.5). Sodium hydroxide solution (0.5 mL, IN) was 

added to the swelled resin 4.4 (290 mg) in DMF (20 rnL). The mixture was shaken for 

24 h. Additional amount of NaOH solution (1 rnL, IN) was added, and the reaction 

mixture was refluxed for 24 h. The resin was collected by filtration and washed with 

water (2 x 25 rnL), DMF (2 x 25 rnL), DCM (2 x 25 rnL), and anhydrous MeOH (2 x 
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25 mL), respectively, and dried under vacuum to yield 4.5 (262 mg, 98%). IR (cm-1
): 

3407 (0-H), 3056 (N-H), 3019 (N-H), 1686 (C=O amide). 

Polymer-bound 3' -fluoro-3' -deoxythymidine ( 4.6). Completely dried resin 4.5 (262 

mg) was swelled in dry benzene (10 mL) and THF (1 mL) and cooled to 0 °C. DAST 

(135 µL, 1.02 mmol) was added to the reaction vessel. The reaction mixture was 

shaken for 72 h at room temperature. The resin was collected by filtration and washed 

with water (2 x 25 mL), DMF (2 x 25 mL), DCM (2 x 25 mL), and anhydrous MeOH 

(2 x 25 mL), and dried under vacuum to afford 4.6 (248 mg, 95%). IR (cm-1
): 3056 

(N-H), 3017 (N-H), 1683 (C=O amide), 1659 (C=O amide). 

3'-Fluoro-3'-deoxythymidine (4.7). Resin 4.6 (248 mg) was suspended in DCM 

containing 3% TF A (I 0 mL) and was shaken at room temperature for 1 h. The resin 

was collected by filtration. The filtrate was concentrated under reduced pressure and 

purified by silica-gel column chromatography using DCM and methanol as eluents 

(98:2, v/v) to afford FLT (39 mg, 55%). 1H NMR, 13C NMR, and high resolution time­

of-flight electrospray mass spectrometry confirmed the structure of the compound. 

Melting point (177-178 °C) (reported mp 176-177 °C) (Herdewijn et al., 1987) and the 

NMR data corresponded to those reported in the literature (Herdewijn et al., 1987, 

Sahlberg et al., 1992, Hager et al., 1992, Kumar et al., 2004, Yun et al., 2003). High 

resolution ESI-MS for FLT (4.7) (C10H13FN20 4) cacld, 244.2196; found, 267.2051 [M 

+Nat. 
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4.4. Results and Discussion 

Recent phase Ila clinical trials of FLT for the treatment of patients with 

multidrug-resistant human immunodeficiency virus infection showed promising 

results without any serious side effects. Furthermore, [ 18F] FLT has been proposed as a 

new marker for imaging tumor proliferation by PET. Thus, there is an increased 

research interest in studying the biological properties of FLT. We designed a solid­

phase method for the synthesis of FLT. 

Scheme 4.1 displays the solid-phase synthesis of FLT. 5'-Hydroxyl group of 

thymidine (4.1) was immobilized on trityl chloride resin (4.2) in the presence of 

pyridine to yield polymer-bound thymidine (4.3, 91%). Resin 4.3 was subjected to 

reaction with methanesulfonyl chloride in the presence of pyridine to afford polymer­

bound 3'-0-mesylthymidine (4.4, 98%). The reaction of 4.4 with sodium hydroxide in 

DMF for 48 h gave polymer-bound threothymidine (4.5, 98%). Diethylaminosulfur 

trifluoride (DAST) was added to the suspension of resin 4.5 in anhydrous benzene and 

THF to produce polymer-bound FLT (4.6, 95%). The reaction was continued for 72 h. 

Washing and acidic cleave of trityl' resin with TFAIDCM (3%) afforded FLT (4.7, 

55%) (overall yield 45%) (Scheme 1). 

Scheme 4.2 shows the solution-phase synthesis of FLT according to the 

modified reported procedure (Yun et al., 2003). Thymidine was converted to 5'-0-

( 4,4' -dimethoxytrityl)thymidine 4.8 (90%) in the presence of 4,4' -dimethoxytrityl 

chloride and dry pyridine. Subsequent mesylation of -3'-hydroxyl group in 4.8 with 
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methanesulfonyl chloride in the presence of pyridine afforded 5' -0-( 4,4' -

dimethoxytrityl)-3'-0-mesylthymidine 4.9 (94%). Basic hydrolysis of 4.9 with 

ethanolic sodium hydroxide afforded 5' -0-( 4,4' -dimethoxytrityl)threothymidine 4.10, 

which was fluorinated with DAST and sequential acidic deprotection to afford FLT 

(4.7, 23%) (overall yield 19%). 

0 '{NH '{NH 
NAO # NAO HO\=) + Cl ... 

~,~ 
OH OH 
4.1 4.2 4.3 

0 0 

"{NH Y.:NH 
# NAO # NAO 
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o~ .... 
f' ~ OH 
""'"--

4.4 ? 4.5 O=S=O 
I 
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v vi NAO 

HO~ 
F 

4.6 4.7 

Scheme 4.1. Solid-phase synthesis of FLT. Reagents: (i) pyridine, 48 h; (ii) MsCl, pyridine, 48 h; (iii) 

NaOH (IN), DMF, H20, 24 h; (iv) NaOH (IN), reflux, 24 h; (v) DAST, benzene, THF, 72 h; (vi) 

TFAJDCM (3%), 1 h. 
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The novelty of the method lies in its simplicity. Thymidine is mixed with trityl 

chloride and is thereby "captured" as an immobilized compound through the 5' -

hydroxyl group. Washing the support allows for the recovery of an excess of 

thymidine and removal of unreacted reagents, and guarantees that no unreacted 

starting materials remain. This makes the method very economical and cost-effective. 

Trityl chloride resin has a hindered structure, thereby allowing for the regioselective 

reaction. The most reactive hydroxyl group (5' -hydroxyl group) of thymidine reacts 

selectively with hindered resin when an excess amount ofthymidine (4 eq) is used. 
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OH 
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iv DMTr-0~ v 

F 4.11 

iii ... 
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Scheme 4.2. Solution-phase synthesis of FLT. Reagents: (i) pyridine, 4,4'-dimethoxytrityl chloride 

(DMTrCI), 3 h; (ii) MsCI, pyridine, 3 h; (iii) NaOH (1 N), EtOH, 12 h (RT), 3 h (reflux); (iv) DAST, 

benzene, THF, 2 h; (vi) CH3COOH (80%), 15 min, reflux. 

This solid-phase strategy allowed the synthesis of FLT in a short time when 

compared to the solution-phase approaches. The synthesis was accomplished without 
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the need for purification of intermediates. The intermediates and the final compound 

remained trapped on the resin, which facilitated the separation of any unreacted 

reagent by washing and filtration. The solid-phase method allowed facile isolation and 

recovery of the final product. 

Reported solution-phase approaches to the synthesis of FLT include a variety 

of protecting groups (Herdewijn et al., 1987, Sahlberg et al., 1992, Hager et al., 1992, 

Kumar et al., 2004). For example, in a parallel modified solution-phase method, (Yun 

et al., 2003) 5'-hydroxyl group of thymidine was protected by 4,4'-dimethoxytrityl 

group to afford 4.8. Subsequent mesylation, basic hydrolysis, fluorination, and acidic 

cleavage reactions afforded FLT ( 4. 7). All the intermediates were purified by silica gel 

column chromatography in a time consuming process. 

FLT was synthesized in a higher overall yield ( 45% overall yield) by the solid­

phase method when compared to that for the solution-phase method[1 8J carried out in 

parallel (19% overall yield). The successful application of the solid-phase strategy for 

the synthesis of FLT provides insight for the synthesis of other 3'-substituted 

nucleosides using a similar methodology. 
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5.1. Abstract 

Fatty acyl-glycol phosphate triester conjugates of 3'-fluoro-2',3'­

dideoxythymidine (FLT) were prepared in three steps from the reaction of 

diisopropylphoramidous dichloride with fatty acyl-substituted glycols, followed by a 

coupling reaction with FLT and oxidation with tert-butyl hydroperoxide (t-BuOOH). 

Additionally, a number of fatty alcohols were reacted with diisopropylphoramidous 

dichloride to produce the phosphitylating intermediates, which underwent coupling 

reactions with 3'-azido-2',3'-dideoxythymidine (AZT) and FLT followed by oxidation 

with t-BuOOH to yield fatty alcohol phosphate triester derivatives of AZT and FLT. 

5.2. Introduction 

2',3'-Dideoxynucleoside analogs are used clinically against the human 

immunodeficiency virus (HIV). There are numerous reasons to utilize nucleotide 

prodrug strategy in order to make anti-HIV nucleosides more effective against the 

virus. Bypassing the first rate-limiting phosphorylation step (Van et al., 1990), 

increasing the lipophilicity, and enhancing the cellular uptake and half-life in blood 

are some of them (Parang et al., 2000). 

On entering the cell, the majority of anti-HIV nucleoside analogs, such as 3'­

fluoro-2 ',3 '-dideoxythymidine (FLT, alovudine) and 3 '-azido-2 ',3 '-dideoxythyrnidine 

(AZT, zidovudine), are phosphorylated to monophosphates, diphosphates, and 
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triphosphates forms by host cellular kinases to show antiviral activity. Negatively­

charged nucleoside monophosphates cannot be directly used because of their high 

polarity and poor cellular uptake. Furthermore, they are readily dephosphorylated on 

cell surfaces and in extracellular fluids by non-specific phosphohydrolases. In order to 

bypass the first rate-limiting phosphorylation step in the metabolic conversion of 

nucleoside analogs, numerous prodrugs of 5'-monophosphate types, such as neutral 

species of phosphotriester derivatives of nucleosides have been proposed (Parang et 

al., 2000, Meier et al., 2004, Rose et al., 2005, Thumann et al., 2996, Meier et al., 

2002, Meier et al., 2006, Farquhar et al., 1994, Jochum et al., 2005) with the hope that 

these prodrugs would release the corresponding nucleoside-monophosphates 

intracellularly. The phosphotriesters must have acceptable stability prior to cellular 

uptake and selective intracellular biotransformation of the active species. Furthermore, 

extensive efforts have been carried out to synthesize lipophilic prodrugs of anti-HIV 

nucleosides by esterification strategy (Parang et al., 2000, Parang et al., 1998, Parang 

et al., 1998, Parang et al., 1998). Both strategies have not yet provided an anti-HIV 

prodrug agent with a clear-cut therapeutic advantage for clinical use. The major 

challenge of developing nucleotide prodrugs has been in the selection of a suitable 

phosphate-masking group. By judicious choice of the alcohols used in triester 

formation, it may be possible to improve cellular uptake and to direct intracellular 

hydrolysis to nucleoside monophosphates. Thus, further research to identify prodrugs 

containing both phosphotriester and lipophilic groups with distinct advantages, 

relative to parent anti-HIV nucleosides is warranted. 
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Herein, we report the synthesis of uncharged fatty acyl and fatty alcohol 

phosphotriester derivatives of AZT and FLT (Figure 5 .1 ). The lipophilic moieties, 

fatty acyls or fatty alcohols, were incorporated into the structure with the aim of 

improving interaction with membrane bilayers and cellular uptake of anti-HIV 

nucleoside phosphotriester derivatives and to release nucleoside monophosphates 

intracellularly, bypassing the first phosphorylation step (Figure 5.2). 

Figure 5.1. Fatty acyl and fatty alcohol phosphotriester derivatives of AZT and FLT. 
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Figure 5.2. Proposed mechanism for cellular uptake and intracellular hydrolysis of 

uncharged phosphotriester derivatives of nucleosides. 
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5.3. Materials and Methods 

5.3.1. Materials 

Alovudine (FLT) was synthesized according to the previously reported method 

(Herdewijn et al., 1987). Zidovudine (AZT) was purchased from Euro Asia Tran 

Continental (Bombay, India). 12-Bromododecanoic acid and 5-ethyl-lH-tetrazole 

were purchased from Sigma Aldrich. All the other chemicals including myristoyl 

chloride, glycol, tert-butyl hydroperoxide, diisopropylphosphoramidous dichloride, 

sodium hydride, sodium iodide, ethanethiol, dimethylamino pyridine (DMAP), 12-

crown-4-ether, N,N-dimethylformamide (DMF), benzene and tetrahydrofuran (THF) 

were purchased from Fisher scientific. The products were purified on a 

Phenomenex®Jupiter 10 µm ODS reversed-phase column (2.1 x 25 cm) with Hitachi 

HPLC L-715 0 system with diode array detector. The chemical structures of final 

desalted products were characterized by nuclear magnetic resonance spectrometry (1H 

NMR, D e NMR, 31P NMR) determined on a Bruker DPX NMR spectrometer (400 

MHz). De NMR spectra are fully decoupled. Chemical shifts are reported in parts per 

millions (ppm). The chemical structures of final products were confirmed by a high­

resolution PE Biosystems Mariner API 2000 time-of-flight electrospray mass 

spectrometer. 
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5.3.2. Chemistry 

2-Hydroxyethyl tetradecanoate (5.1) and 2-hydroxyethyl 12-bromododecanoate 

(5.2). A mixture of ethylene glycol (1 mL, 18 rnmol) and fatty acyl chloride ( 4 rnmol) 

were refluxed for 3 h in the presence of DMAP (600 mg, 5 rnmol) as a base in dry 

benzene (10 mL) and DMF (10 mL). The reaction mixture was cooled down to room 

temperature and neutralized with sodium bicarbonate solution (5%). The organic layer 

was separated and the aqueous layer was extracted with DCM (3 x 100 mL). The 

organic layers were mixed together, dried with anhydrous sodium sulfate, and 

evaporated under vacuum. Crude products were purified by using silica gel column 

chromatography and hexane and dichloromethane (50:50) as eluting solvents to afford 

5.1 and 5.2 in 70% yield. 

2-Hydroxyethyl tetradecanoate (5.1). 1H NMR (400 MHz, CDCh, 8 ppm): 8 4.16 (t, 

J= 4.8 Hz, 2H, COOCH2), 3.76 (t, J= 4.8 Hz, 2H, CH20H), 2.78-2.89 (br s, lH, OH), 

2.30 (t, J= 7.6 Hz, 2H, CH2COO), 1.59-1.70 (m, 2H, CH2CH2COO), 1.20-1.41 (br m, 

20H, methylene envelope), 0.84 (t, J= 6.8 Hz, 3H, CH3); 
13C NMR (CDCh, 100 MHz, 

8 ppm): 174.72 (COO), 66.20 (COOCH2), 61.35 (CH20H), 34.54 (CH2COO), 32.23, 

30.06, 30.03, 29.94, 29.84, 29.74, 29.66, 29.52, 25.27, 23.06 (methylene carbons), 

14.48 (CH3); HR-MS (ESI-TOF) (mJz): C16H3203: calcd. 272.2351; found 273.6315 

[M+Ht. 

2-Hydroxyethyl 12-bromododecanoate (5.2). 1H NMR (400 MHz, CDC13, 8 ppm): 8 

4.16 (t, J= 4.7 Hz, 2H, COOCH2), 3.78 (t, J= 4.7 Hz, 2H, CH20H), 3.37 (t, J= 6.9 
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Hz, 2H, CH2Br), 2.40-2.52 (br s, lH, OH), 2.31 (t, J= 7.7 Hz, 2H, CH2COO), 1.78-

1.87 (m, 2H, BrCH2CH2), 1.53-1.65 (m, 2H, CH2CH2CO), 1.35-1.45 (m, 2H, 

BrCH2CH2CH2.), 1.20-1.35 (please give a range) (br m, 12H, methylene envelope); 

nc NMR (CDCh, 100 MHz, o ppm): 174.36 (COO), 65.96 (COOCH2), 61.20 

(CH20H), 34.25 (CH2COO, CH2Br), 32.90, 29.52, 29.47, 29.31, 29.19, 28.82, 28.23, 

24.97 (methylene carbons); HR-MS (ESI-TOF) (m/z): C14H27Br03: calcd. 322.1144; 

found 323.5677 [M +Ht. 

2-Hydroxyethyl 12-iodododecanoate (5.3). Compound 5.2 (1.7 g, 5.3 mmol) was 

mixed with sodium iodide (1.6 g, 10.7 mmol) in dry acetone (100 mL) and the 

reaction mixture was stirred for 18 h at room temperature. After filtration, water (250 

rnL) was added to the filtrate and extracted with dichloromethane (3 x 100 mL). The 

organic layers were mixed together, dried with anhydrous sodium sulfate, 

concentrated under vacuum, and dried overnight to give 5.2 (95% yield). 

1H NMR (400 MHz, CDCh, o ppm): o 4.20-4.27 (m, 2H, COOCH2), 3.80-3.86 (m, 

2H, CH20H), 3.17 (t, J= 7.0 Hz, 2H, CH2I), 2.33 (t, J= 7.5 Hz, 2H, CH2COO), 2.15-

2.30 (br s, lH, OH), 1.74-1.84 (m, 2H, ICH2CH2), 1.58-1.69 (m, 2H, CH2CH2CO), 

1.35-1.42 (m, 2H, ICH2CH2CH2), 1.22-1.35 (br m, 12H, methylene protons); 13C 

NMR (CDCh, 100 MHz, o ppm): 174.17 (COO), 65.82 (COOCH2), 61.17 (CH20H), 

34.10 (CH2COO), 33.46, 30.41, 29.36, 29.29, 29.14, 29.03, 28.43, 24.82 (methylene 

carbons), 7.31 (CH2I); HR-MS (ESI-TOF) (m/z): C14H21I03: calcd. 370.l 005; found 

393.0269 [M +Nat. 
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2-Hydroxyethyl 12-azidododecanoate (5.4). Compound 5.3 (1.8 g, 4.9 mmol) was 

mixed with sodium azide (1g,15.4 mmol) and 12-crown-4 ether (2.6 mL, 15.9 mmol) 

in DMF (100 mL). The reaction mixture was stirred overnight at room temperature. 

The solvent was evaporated using reduced pressure and the crude product was purified 

using silica gel column chromatography and hexane and dichloromethane (50:50) as 

eluting solvents to afford 5.4 (55% yield). 

1H NMR (400 MHz, CDCh, o ppm): o 4.18 (t, J= 4.7 Hz, 2H, COOCH2), 3.79 (t, J= 

4.7 Hz, 2H, CH20H), 3.23 (t, J = 7.0 Hz, 2H, CH2N3), 2.23 (t, J = 7.7 Hz, 2H, 

CH2COO), 1.50-1.64 (m, 4H, NJCH2CH2, CH2CH2CO), 1.15-1.45 (br m, 14H, 

methylene envelope); 13C NMR (CDCh, 100 MHz, o ppm): 174.17 (COO), 65.77 

(COOCI-h), 61.05 (CfhOH), 51.34 (CH2N3), 34.05 (CH2COO), 29.31, 29.26, 29.11, 

28.98, 28.70, 26.57, 24.77 (methylene carbons); HR-MS (ESI-TOF) (m/z): 

C14H21N303: calcd. 285.2052; found 308.1454 [M +Nat. 

2-Hydroxyethyl 13-thiapentadecanoate (5.5). 2-Hydroxyethyl-12-

bromododecanoate (5.2) (2.0 g, 6.2 mmol) was added to a mixture containing sodium 

hydride (200 mg, 8.3 mmol) and ethanethiol (470 mg, 7.6 mmol) in dry THF (50 mL). 

The mixture was stirred at room temperature for 1 h and then refluxed for 16 h. The 

reaction mixture was cooled down to the room temperature and water (200 mL) was 

added to it. The solution was extracted with dichloromethane (3 x 100 mL). The 

organic layer was separated, dried with anhydrous sodium sulfate, and evaporated 

under vacuum. The crude product was purified using silica gel column 
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chromatography and hexane and dichloromethane (50:50) as eluting solvents to afford 

5.5 (60% yield). 

'H NMR (400 MHz, CDCh, 8 ppm): 8 4.16 (t, J= 4.7 Hz, 2H, COOCH2), 3.78 (t, J= 

4.7 Hz, 2H, CH20H), 2.56-2.64 (br s, lH, OH), 2.40-2.56 (m, 4H, CH2SCH2), 2.31 (t, 

J= 7.7 Hz, 2H, CH2COO), 1.50-1.65 (m, 4H, SCH2CH2, and CH2CH2CO), 1.14-1.40 

(br m, 17H, methylene envelope, CH3CH2S); 13C NMR (CDCh, 100 MHz, 8 ppm): 

174.66 (COO), 66.24 (COOCH2), 61.42 (CH20H), 34.54 (CH2COO), 31.90, 29.99, 

29.66, 29.78, 29.61, 29.49, 29.31, 26.42, 25.26 (methylene carbons), 15.19 (CH3); 

HR-MS (ESI-TOF) (m/z): C16H3203S: calcd. 304.2072; found 327.2986 [M +Nat, 

343.2708 [M +Kt. 

Synthesis of fatty acyl-glycol ester conjugates 5.14-5.17. 

Diisopropylphosphoramidous dichloride (0.5 equivalent, 300 mg, 1.5 mmol) and 

DMAP (1 equiv., 360 mg, 3 mmol) were dissolved in THF (100 mL) and cooled down 

to -80 °C. Solution of 5.1-5.5 (800 mg, 3 mmol) in THF (20 mL) was added dropwise 

to the reaction mixture with constant stirring during 1 h period. The reaction mixture 

was continued to stir for 3 h to yield intermediates 5.6-5.9. DMAP hydrochloride was 

filtered out and FLT (0.5 equiv, 350 mg, 1.5 mmol) and 5-ethyl-lH-tetrazole (585 mg, 

4.5 rnmol) were added to the reaction mixture and stirred overnight to produce 5.10-

5.13. t-BuOOH in decane (5-6 M) (450 µL, 4.5 mmol) was added to the reaction 

mixture and stirring was continued for 4 h. To the reaction mixture was added water 

(100 rnL) and the solution extracted with dichloromethane (3 x 50 mL). The organic 

layer was dried with anhydrous sodium sulfate and evaporated under vacuum. The 
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crude products were purified using reverse-phase HPLC and acetonitrile (100%) as the 

eluting solvent to afford 5.14-5.17 in 7-17% overall yield (70-180 mg). 

3 '-Fluoro-2 ',3 '-dideoxythymidine-5 '-[ (bis(2-tetradecanoylglycolyl] phosphate 

(5.14). 1H NMR (400 MHz, CDCh, o ppm): o 8.27 (s, lH, N-H), 7.41 (s, lH, H-6), 

6.42 (dd, J= 9.2 and 5.4 Hz, lH, H-1'), 5.30 (dd, J= 53.2 and 4.9 Hz, lH, H-3'), 4.40 

(dd, J = 26.6 and 2.5 Hz, lH, H-4'), 4.25-4.34 (br m, lOH, H-5' and H-5", 

COOCH2CH20), 2.53-2.67 (m, lH, H-2'), 2.30-2.38 (m, 4H, CH2CO), 2.09-2.28 (m, 

lH, H-2"), 1.95 (s, 3H, 5-CH3), 1.56-1.66 (m, 4H, CH2CH2CO), 1.21-1.35 (br m, 40H, 

methylene envelope), 0.89 (t, J = 6.80 Hz, 3H, CH3); 
13C NMR (CDCh, 100 MHz, o 

ppm): 173.38 (COO), 163.08 (C-4 C=O), 152.99 (C-2 C=O), 135.01 (C-6), 112.20 (C-

5), 93.35 (J = 178.6 Hz, C-3'), 84.93 (C-1 '), 82.71 (J = 27.1 Hz, C-4'), 66.84 (CH2-

0P), 66.07 (COOCH2), 62.44 (C-5'), 37.93 (J = 20.7 Hz, C-2'), 33.99 (CH2COO), 

31.91, 29.65, 29.61, 29.47, 29.35, 29.28, 29.13, 24.80, 22.69 (methylene carbons), 

14.12 (CH3), 12.41 (5-CH3); 
31P NMR (CDCb, HJP04 85% in water as external 

standard, 162 MHz, o ppm): 4.79; HR-MS (ESI-TOF) (m/z): C42H14FN20 11P: calcd. 

832.5014; found 855.4673 [M +Nat. 

3'-Fluoro-2',3'-dideoxythymidine-5'-[(bis(2-(12-

bromododecanoyl)glycolyl)]phosphate (5.15). 1H NMR (400 MHz, CDCh, o ppm): 

o 8.30 (s, lH, N-H), 7.41 (s, lH, H-6), 6.42 (dd, J = 9.2 and 5.4 Hz, lH, H-1 '), 5.25 

(dd, J = 53.4 and 5.1 Hz, lH, H-3'), 4.40 (dd, J = 26.6 and 2.5 Hz, lH, H-4'), 4.25-

4.33 (br m, IOH, H-5', H-5", and COOCH2CH20), 3.54 (t, J = 6.8 Hz, 2H, BrCH2), 
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3.42 (t, J= 6.8 Hz, 2H, BreH2), 2.55-2.67 (m, lH, H-2'), 2.29-2.38 (m, 4H, eH2eO), 

2.09-2.28 (m, lH, H-2"), 1.95 (s, 3H, 5-eH3), 1.73-1.89 (m, 4H, CH2eH2Br), 1.57-

1.67 (m, 4H, eH2eH2CO), 1.36-1.47 (m, 4H, eH2eH2CH2eO), 1.20-1.35 (br m, 24H, 

methylene envelope); De NMR (eDeh, 100 MHz, 8 ppm): 173.81(COO),163.79 (e-

4 C=O), 150.61 (e-2 C=O), 135.44 (e-6), 112.20 (e-5), 93.79 (J = 178.0 Hz, e-3'), 

85.33 (e-1'), 83.07 (J= 26.8 and 7.6 Hz, e-4'), 67.30 (J= 10.9 and 6.0 Hz, CH2-0P), 

66.54 (eOOCH2), 62.90 (J= 6.8 Hz, e-5'), 45.63 (CH2Br), 38.32 (J= 21.2 Hz, e-2'), 

34.45 (CH2eOO), 33.21, 30.10, 29.86, 29.79, 29.66, 29.50, 29.27, 29.15, 28.55, 27.26, 

27.19 (methylene carbons), 12.85 (5-CH3); 
31 P NMR (eDel3, H3P04 85% in water as 

external standard, 162 MHz, 8 ppm): 4.78; HR-MS (ESI-TOF) (m/z): 

C3sH64Br2FN20IIP: calcd. 932.2599; found 955.4436 [M + Nat, 976.3518, [M + 

2Na( 

3'-Fluoro-2',3'-dideoxythymidine-5'-[(bis(2-(12-

azidododecanoyl)glycolyl)]phosphate (5.16). 1H NMR (400 MHz, eDeh, 8 ppm): 8 

9.37 (s, lH, N-H), 7.39 (s, lH, H-6), 6.41 (dd, J= 9.2 and 5.4 Hz, lH, H-1'), 5.23 (dd, 

J= 53.4 and 5.1 Hz, lH, H-3'), 4.38 (dd, J= 26.5 and 2.5 Hz, lH, H-4'), 4.22-4.29 (br 

m, IOH, H-5', H-5", and eooeH2CH20), 3.23 (t, J= 7.0 Hz, 4H, N3eH2), 2.53-2.70 

(m, lH, H-2'), 2.29-2.35 (m, 4H, eH2eO), 2.10-2.30 (m, lH, H-2"), 1.92 (s, 3H, 5-

CH3), 1.52-1.68 (m, 8H, N3CH2eH2), 1.20-1.45 (br m, 28H, methylene envelope); De 

NMR (eDeh, 100 MHz, 8 ppm): 173.80 (COO), 164.06 (e-4 C=O), 150.80 (e-2 

C=O), 135.41(C-6),112.20 (e-5), 93.80 (J= 178.4 Hz, e-3'), 85 .31 (e-1'), 83.55 (J 

= 26.8 and 7.9 Hz, C-4'), 67.27 (J = 5.7 and 10.9 Hz, CHi-OP), 66.52 (COOCH2), 
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62.91(J=5.0 Hz, C-5'), 51.85 (ClfiN3), 38.31(J=20.9 Hz, C-2'), 34.36 (Cl-I2COO), 

29.78, 29.72, 29.64, 29.62, 29.51, 29.21, 27.01, 25.18 (methylene carbons), 12.83 (5-

CH3); 31P NMR (CDCh, H3P04 85% in water as external standard, 162 MHz, 8 ppm): 

2.81; HR-MS (ESI-TOF) (m/z): C3sH64FNs011P: _calcd. 858.4416; found 859.3552 [M 

+Ht, 881.3245 [M +Nat, 897.2941 [M +Kt. 

3'-Fluoro-2',3'-dideoxythymidine-5'-[(bis(2-(12-

thioethyldodecanoyl)glycolyl)]phosphate (5.17). 1H NMR ( 400 MHz, CDCh, o 

ppm): 8 8.65 (s, lH, N-H), 7.41 (s, lH, H-6), 6.42 (dd, J= 9.2 and 5.4 Hz, lH, H-1'), 

5.25 (dd, J = 53.4 and 5.1 Hz, lH, H-3'), 4.40 (dd, J = 26.5 and 2.5 Hz, lH, H-4'), 

4.25-4.35 (br m, lOH, H-5', H-5", and COOCH2CH20), 2.59-2.75 (m, lH, H-2'), 2.49-

2.59 (m, 8H, CH2SCH2), 2.29-2.38 (m, 4H, CH2CO), 2.09-2.29 (m, lH, H-2"), 1.95 (s, 

3H, 5-CH3), 1.53-1.72 (m, 8H, CH2CH2S, CH2CH2CO), 1.20-1.39 (br m, 34H, 

methylene envelope, CH3CH2S); 13C NMR (CDCh, 100 MHz, o ppm): 173.80 (COO), 

163.72 (C-4 C=O), 150.55 (C-2 C=O), 135.45 (C-6), 112.19 (C-5), 93.77 (J = 178.6 

Hz, C-3'), 85.35 (C-1'), 83.07 (J= 26.8 and 7.8 Hz, C-4'), 67.28 (J= 11.1 and 5.6 Hz, 

CH2-0P), 66.58 (COOCI-12), 62.90 (J= 5.1 Hz, C-5'), 38.34 (J= 21.1 Hz, C-2'), 34.40 

(CH2COO), 32.33, 32.06, 30.13, 30.05, 29.91, 29.84, 29.78, 29.65, 29.53, 29.36, 

26.31, 26.31, 25.20 (methylene carbons), 15.23 (Cl-13), 12.84 (5-Cl-13); 31 P NMR 

(CDCh, H3P04 85% in water as external standard, 162 MHz, 8 ppm): 2.82; HR-MS 

(ESI-TOF) (m/z): C42H74FN20 11 PS2: calcd. 896.4456; found 897.3566 [M +Ht. 
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Synthesis of fatty alcohol phosphotriester derivatives of AZT and FLT (5.23-

5.25). Diisopropylphosphoramidous dichloride (0.5 equiv., 300 mg, 1.5 mrnol) and 

DMAP (1 equiv., 360 mg, 3 mmol) were dissolved in THF (100 mL). The reaction 

mixture was cooled down to -80 °C. Solution of alcohols (800 mg, 3 mmol) in THF 

(20 mL) was added dropwise with constant stirring during 1 h period. The reaction 

mixture was continued to stir for 3 h to afford 5.18-5.19. DMAP hydrochloride was 

filtered out and FLT or AZT (1.5 mmol) and 5-ethyl-lH-tetrazole (585 mg, 4.5 mmol) 

was added to the reaction mixture and stirred overnight to yield 5.20-5.22. t-BuOOH 

in decane (5-6 M) (450 µL, 4.5 mrnol) was added to the reaction mixture and stirring 

was continued for 4 h. To the reaction mixture was added water (100 rnL) and the 

solution was extracted with dichloromethane (3 x 50 mL). The organic layer was dried 

with anhydrous sodium sulfate and evaporated under vacuum. The crude products 

were purified using reverse-phase HPLC and acetonitrile (100%) as the eluting solvent 

to afford 5.23-5.25 in 6-20% overall yield ( 45-180 mg). 

3 '-Fluoro-2 ',3 '-dideoxythymidine-5 '-bis( decanoyl)-phosphate (5.23). 1 H NMR 

(400 MHz, CDCh, 5 ppm): 5 9.71 (s, lH, N-H), 7.44 (s, lH, H-6), 6.44 (dd, J = 9.2 

and 5.4 Hz, lH, H-1'), 5.27 (dd, J= 53.2 and 4.9 Hz, lH, H-3'), 4.37 (dd, J= 26.9 and 

2.4 Hz, lH, H-4'), 4.18-4.30 (m, 2H, H-5' and H-5"), 4.00-4.09 (m, 4H, CH20P), 2.51-

2.65 (m, lH, H-2'), 1.95-2.19 (m, lH, H-2"), 1.92 (s, 3H, 5-CH3), 1.62-1.72 (m, 4H, 

CH2CH20P), 1.17-1.38 (br m, 32H, methylene envelope), 0.85 (t, J = 6.7 Hz, 3H, 

CH3); 
13C NMR (CDCh, 100 MHz, 5 ppm): 164.32 (C-4 C=O), 150.98 (C-2 C=O), 

135.32 (C-6), 112.20 (C-5), 94.09 (J= 178.0 Hz, C-3'), 85.06 (C-1'), 83.26 (J= 27.0 
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and 6.9 Hz, C-4'), 68.80 (CfhOP), 66.89 (J= 11.3 and 4.8 Hz, C-5'), 38.54 (J= 20.7 

Hz, C-2'), 32.25, 30.70, 30.10, 29.87, 29.66, 29.49, 25.79, 23.05 (methylene carbons), 

14.49 (CH3), 12.86 (5-CH3); 31 P NMR (CDCh, HJP04 85% in water as external 

standard, 162 MHz, 8 ppm): 5.09. HR-MS (ESI-TOF) (nifz): C30Hs4FN201P: calcd. 

604.3653 ; found 605.0470 [M +Ht, 642.9381 [M +Kt. 

3 '-Fluoro-2 ',3 '-dideoxythymidine-5'-bis(l1-bromoundecanoyl)phosphate (5.24): 

1H NMR (400 MHz, CDCh, o ppm): 8 8.95 (s, lH, N-H), 7.45 (s, lH, H-6), 6.42 (dd, 

J= 9.2 and 5.4 Hz, lH, H-1'), 5.25 (dd, J= 53.4 and 5.1 Hz, lH, H-3'), 4.35 (dd, J= 

26.6 and 2.5 Hz, lH, H-4'), 4.18-4.28 (m, 2H, H-5' and H-5"), 4.00-4.10 (m, 4H, 

CH20P), 3.35 (t, J= 6.8 Hz, 4H, BrCH2), 2.52-2.65 (m, lH, H-2'), 2.01-2.19 (m, lH, 

H-2"), 1.92 (s, 3H, 5-CH3), 1.80-1.89 (m, 4H, BrCH2CH2), 1.63-1.71 (m, 4H, 

CH2CH20P), 1.33-1.44 (m, 4H, CH2CH2CH20P), 1.21-1.33 (br m, 24H, methylene 

envelope); 13C NMR (CDCh, 100 MHz, 8 ppm): 163.89 (C-4 C=O), 150.69 (C-2 

C=O), 135.38 (C-6), 112.16 (C-5), 94.97 (J= 178.0 Hz, C-3'), 85.08 (C-1'), 83.56 (J= 

27.0 Hz, C-4'), 68.79 (CH20P), 63.85 (C-5'), 53.43 (CH2Br), 38.56 (J = 20.0 Hz, C-

2'), 34.51, 33.18, 30.73, 30.66, 30.09, 29.95, 29.83, 29.80, 29.77, 29.48, 29.12, 28.53, 

26.15, 25.80 (methylene carbons), 12.87 (5-CH3); 
31 P NMR (CDC13, H3P04 85% in 

water as external standard, 162 MHz, o ppm): 5.03. HR-MS (ESI-TOF) (m/z): 

C32Hs6Br2FN20 7P: calcd. 788.2176; found 789.9278 [M +Ht. 

3'-Azido-2',3'-dideoxythymidine-5'-bis(decanoyl) phosphate (5.25): 1H NMR (400 

MHz, CDCh, 8 ppm): 8 9.92 (s, lH, N-H), 7.39 (s, lH, H-6), 6.20 (t, J= 6.6 Hz, lH, 
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H-1 ), 4.26-4.33 (m, lH, H-3), 4.15-4.28 (m, 2H, H-5' and H-5"), 3.95-4.05 (m, 5H, 

cH20P, H-4'), 2.34-2.42 (m, lH, H-2'), 2.22-2.29 (m, lH, H-2"), 1.87 (s, 3H, 5-CH3), 

1.55-1.68 (m, 4H, CH2CH20P), 1.10-1.33 (br m, 40H, methylene envelope), 0.80 (t, J 

== 6.7 Hz, 3H, CH3); 13C NMR (CDCb, 100 MHz, 8 ppm): 163.82 (C-4 C=O), 150.31 

(C-2 C=O), 134.96 (C-6), 111.31 (C-5), 84.45 (C-1 '), 82.14 (C-4'), 66.84 (CH20P), 

59.98 (C-5'), 52.71 (C-3'), 37.33 (C-2'), 31.65, 30.11, 30.05, 29.47, 29.30, 29.15, 

29.06, 28.90, 25.20, 22.45 (methylene carbons), 13.90 (CH3), 12.28 (5-CH3). 31 P 

NMR (CDCb, H3P04 85% in water as external standard, 162 MHz, 8 ppm): 5.08; HR­

MS (ESI-TOF) (m/z): C30Hs4Ns01P: calcd. 627.3761; found 628.3108 [M +Ht. 

5.3.3. Anti-HIV assays 

Anti-HIV activities of the compounds were evaluated according to the 

previously reported procedure (Krebs et al., 1999). In summary, HeLa (Human 

cervical carcinoma: ATCC CCL-2.1) cell line was used to measure inactivation of 

both cell-free virus preparations and virus-infected cell preparations. Cells were plated 

in culture plates 24 hrs prior to each experiment. Cell-free viral preparations of HIV-1 

strains IIIB (lymphocytotropic strain) and BaL (monocytotropic strain) were used for 

cell-free assay. For cell-associated assay, SulTl cells were infected with IIIB virus 5 

days prior to the experiment. Cell-free virus and virus-infected cells were mixed with 

different compounds and diluted to make different concentrations. The mixture was 

further diluted with the buffer and added to the HeLa cells. The cells were incubated at 

3 7°C for 48 h, stained for P-galctosidease expression and compared with P-
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galctosidease expression from the ~-gal-positive cells in absence of any microbicidal 

compound to get ICso values. 

5.4. Results and Discussion 

In the first class of compounds, two identical fatty acids were linked through a 

glycol linker to a phosphate group, which was attached to 5'-0-position of FLT to 

afford bis(fatty acyl-glycol)phosphate triester derivatives. The selection of fatty acids 

was based on the previously reported moderate anti-HN activities of 12-

bromododecanoic acid, 12-azidododecanoic acid, and 12-thioethydodecanoic acid 

(Parang et al., 1997). In the second class of compounds, fatty alcohols and 

nucleosides, FLT and AZT, were directly attached to phosphotriester group. 

The synthetic procedures used for the synthesis of phosphotriester derivatives 

of nucleosides were based on P(III) chemistry using phosphoramidite approach and 

consisted of three steps: (i) the derivatization of diisopropylphosphoramidous 

dichloride with fatty-acyl-glycols or fatty alcohols to afford phosphoramidites, (ii) the 

reaction of resulting phophoramidates with FLT or AZT in the presence of ethyl-lH­

tetrazole, and (iii) oxidation of P(III) to P(V). 

For the synthesis of compounds in the first class, fatty acid-glycol ester 

conjugates 5.1-5.5 (Scheme 5.1) were prepared. 2-Hydroxyethyl tetradecanoate (5.1) 
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and 2-hydroxyethyl 12-bromododecanoate (5.2) were synthesized (70% yield) from 

the treatment of the corresponding fatty acyl chloride ( 4 mmol) and ethylene glycol 

(18 mmol) in the presence of dimethylaminopyridine (DMAP) (5 mmol) in benzene 

and DMF (Scheme 5.1). 

+ 

5.2 

j c,H,SH' Na H, TH F 

5.5 

Ryo~ 
OH 

0 
5.1 R = CH3(CH2)1r 
5.2 R = Br(CH 2)w 

Nal, acetone .. 1-(CH2)11yO~OH 

0 
5.3 

j NaN,. 12-crown-4 ether, DM F 

5.4 

Scheme 5.1. Synthesis of fatty acid-glycol ester conjugates 5.1-5.5. 

2-Hydroxyethyl 12-bromododecanoate (5.2) was used for the synthesis of 2-

hydroxyethyl 12-azidododecanoate (5.4) and 2-hydroxyethyl 13-thiapenatadecanoate 

(5.5). Bromosubstituted ester conjugate 5.2 (5.3 mmol) was treated first with sodium 

iodide (10.7 mmol) in acetone to yield the corresponding iodosubstituted glycol ester 

5.3 (95%). Compound 5.3 (4.9 mmol) was reacted with sodium azide (15.4 mmol) in 

the presence of 12-crown-4 ether (15.9 mmol) in DMF to yield 5.4 in 55% yield. 
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similarly, nucleopbilic reaction of ethanethiol (7.6 mmol) with 5.2 (6.2 mmol) in the 

presence of sodium hydride (8.3 mmol) afforded 12-tbioethyl substituted analog 5.5 in 

60% yield (Scheme 5.1). 

Scheme 5.2 outlines the synthesis of bis(fatty acyl-glycol)phosphotriester 

derivatives of FLT (5.14-5.17 using P(III) chemistry. In general, fatty acyl-glycol ester 

conjugates 5.1-5.5 (3 mmol) were treated in THF with diisopropylphosphoramidous 

dichloride (1.5 mmol) in the presence of DMAP (3 mmol) at -80 °C to afford 

intermediate bis(fatty acyl-glycol) diisopropyl phosphoramidite conjugates (5.6-5.9). 

Low temperature proved to be important for the success of this coupling reaction as 

shown by the failure of the reaction of 5.1 with diisopropylphosphoramidous 

dichloride in the presence of pyridine at room temperature. The intermediates 5.6-5.9 

should be used immediately in the next reaction without purification because of the 

activity of the phosphorous in trivalent form in these compounds. Subsequent 

conversion of phosphoramidite intermediates to phosphotriesters was accomplished by 

treatment with FLT (1.5 mmol) in presence of 5-ethyl-lH-tetrazole (4.5 mmol) 

followed by in situ oxidation with tert-butyl hydroperoxide (t-BuOOH, 4.5 mmol) to 

obtain bis(fatty acyl-glycol)phosphotriester derivatives of FLT (5.14-5.17). The 

chemical structures of 5.14-5.17 were determined by 1H NMR, 13C NMR, 31p NMR, 

and high-resolution ESI mass spectrometry (Table 5.1). 
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Table 5.1. The physicochemical characteristics and anti-HIV activities of compounds 

5.14-5.17 and 5.23-5.25. 

Compd. 31pNMR. 
HR-MS (ESI-TOF) .t\rlti-HIVbICso Overall No. (8, ppmt (uM) 

Yield(%) 

5.14 4.79 855.4673 [M +Na] >100 6.3 

5.15 4.78 955.4436 tM + NaJ\_976.3518, 
M+2Na]. 63 7.7 

5.16 2.81 859.3552 [M +Ht, 881.3245 
[M +Nat, 897.2941 [M +Kt 76 6.5 

5.17 2.82 897.3566 [M +Ht 87 12.5 

5.23 5.09 605.0470 tM + ~r· 642.9381 
M+KT >100 14.1 

5.24 5.03 789.9278 [M +Ht 33 7.0 

5.25 5.08 628.3108 [M +Ht >100 19.8 

"The spectra were measured on a 400 MHz spectrometer using CDCh as the solvent (H3P04 85% in 
water as external standard); 

bIC50: 50% inhibitory concentration. 
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Rl(O~OH + 

0 

5.1 R = CH3(CH2)1 r 
5.2 R = Br(CH2)11-
5.4 R = N3-(CH2)11-
5.5 R = C2Hs-S-(CHv11-

FLT _ 

5-ethyl-1 H-tetrazole 

DMAP, THF 
-80 °C 

t-BuOOH 

5.10 R = CH3(CHv1r 
5.11 R = Br(CHv11-
5.12 R = N3-(CHi) 11 -
5.13 R = C2Hs-S-(CH2)11-

5.14 R = CH3(CH2)1r 
5.15 R = Br(CHvw 
5.16 R = N3-(CHi} 11 -
5.17 R = C2H5-S-(CH2)11-

Scheme 5.2. Synthesis of fatty acyl-glycol ester conjugates 5.14-5.17. 

For the synthesis of fatty alcohol phosphotriester derivatives of the 

nucleosides, AZT was first attached to bis(diisopropyl-amino)chlorophosphine in the 

presence of pyridine. However, the intermediate was not stable during purification by 

silica gel column chromatography. Alternatively, the synthesis of fatty alcohol 
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phosphotriester derivatives of AZT and FLT (5.20-5.22) was accomplished by the 

reaction of dialkoxy substituted phosphitylating reagents, diisopropylamino 

dialkoxyphosphine, with AZT and FLT in the presence of 5-ethyl-lH-tetrazole in THF 

(Scheme 5.3). First dialkoxy substituted phosphitylating reagents were synthesized 

using diisopropylphosphoramidous dichloride and different fatty alcohols (i.e., 

decanol and 11-bromoundecanol). Solution of alcohols (3 mmol) in THF (20 mL) was 

added to a mixture of diisopropylphosphoramidous dichloride (1.5 mmol) and DMAP 

(3 mmol) in THF (100 mL) at -80 °C to afford 5.18 and 5.19. FLT or AZT (1.5 mrnol) 

and 5-ethyl-lH-tetrazole (4.5 mmol) were added to the reaction mixture to yield 5.20-

5.22. Oxidation of phosphite triesters 5.20-5.22 to phosphate triesters was 

accomplished with t-BuOOH (4.5 mmol) to afford 5.23-5.25. The chemical structures 

of 5.23-5.25 were determined by 1H NMR, 13C NMR, 31 P NMR, and high-resolution 

ESI mass spectrometry (Table 5.1 ). 
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0 

'{NH 

DMAP, THF 

-80 °C 

+ NAO HO'd 5-ethyl-1 H-tetrazole 

R2 

t-BuOOH .. 

5.18 R1 = CH3 
5.19 R1 = Br-CH2 

5.23 R1 = CH3 R2 = F 
5.24 R1 = Br-CH2 R2 = F 
5.25 R1 = CH3 R2 = N3 

Scheme 5.3. Synthesis of fatty alcohol phosphotriester derivatives of AZT and FLT 

(5.23-5.25). 

Using a single-round infection assay (Krebs et al., 1999) with HIV-1 IIIB and 

transformed HeLa cells expressing HIV receptors (CD4) and coreceptors (CXCR4 and 

CCR5), the newly synthesized triester derivatives showed only modest antiviral 

activity, significantly lower than that of their parent nucleosides, AZT and FLT (IC50= 

10 and 0.8 µM, respectively). 
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In summary, the results presented herein show that the synthesis of different 

classes of lipophilic phosphate triesters of FLT and AZT can be successfully 

accomplished by using P(III) chemistry. The extension of this methodology should 

prove to be useful for the development of lipophilic phosphotriester prodrugs of other 

nucleosides. The premature hydrolysis of the phosphate-masking group bond in the 

extracellular medium, however, may have yielded a negatively-charged diester with 

low cellular uptake and reduced antiviral potency. The phosphotriesters must have 

acceptable stability in cell culture prior to cellular uptake and selective intracellular 

transformation of the active species. We were not able to determine the stability of 

compounds because of their extremely low water solubility. The extracellular 

hydrolysis of phosphotriester derivatives of nucleosides has been previously reported. 

For example, McGuigan et al. (1990 and 1994) reported that some of dialkyl and 

diaryl phosphotriester derivatives of AZT were inactive because of the rapid in vitro 

hydrolysis to release the nucleotide extracellularly. The utility of phosphotriester 

derivatives of nucleosides will be enhanced by a clearer understanding of the 

mechanisms pertaining to their bioconversion, uptake, and cellular incorporation. 
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6.1. Abstract 

A liver-selective prodrug (3TCSD) of the antiviral drug lamivudine (3TC) was 

developed and characterized. 3TC was coupled to dextran (~25 kDa) using a succinate 

linker and the in vitro and in vivo behavior of the conjugate were studied using newly­

developed size-exclusion and reversed-phase analytical methods. Synthesized 3TCSD 

had a purity of> 99% with a degree of substitution of 6.5 mg 3TC per 100 mg of the 

conjugate. Furthermore, the developed assays were precise and accurate in the 

concentration ranges of 0.125-20, 0.36-18, and 1-50 µg/mL for 3TC, 3TC succinate 

(3TCS), and 3TCSD, respectively. In vitro, the conjugate slowly released 3TC in the 

presence of rat liver lysosomes, whereas it was stable in the corresponding buffer. In 

vivo in rats, conjugation of 3TC to dextran resulted in forty- and seven-fold decreases 

in the clearance and volume of distribution of the drug, respectively. However, the 

accumulation of the conjugated 3TC in the liver was fifty-fold higher than that of the 

parent drug. The high accumulation of the conjugate in the liver was associated with a 

gradual and sustained release of 3TC in the liver. These studies indicate the feasibility 

of the synthesis of 3TC-succinate-dextran and its potential use for the selective 

delivery of 3TC to the liver. 

6.2. Introduction 

Lamivudine (~-L-2',3'-dideoxy-3'-thiacytidine, 3TC) is a deoxycytidine 

nucleoside analog that inhibits hepatitis B virus (HBV) replication and is used in the 

treatment of chronic hepatitis B infection (Jarvis et al., 1999). In addition to the 

efficacy of antiviral drugs against HBV, treatment of HBV infection is significantly 
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dependent on the pharmacokinetics of these drugs, in particular their distribution and 

accumulation in the liver. To be effective, 3TC needs to enter liver cells and be 

phosphorylated to its active form 3TC 5'-triphosphate intracellularly before 

incorporation into DNA of HBV by DNA polymerase (Shaw et al., 1999, Younger et 

al. , 2004). Therefore, strategies that direct the drug to its site of action (liver) may 

increase the effectiveness of the drug and decrease its potential side effects · in other 

non-target organs. Indeed, several studies (Bijsterbosch et al., 1996, Rensen et al., 

1996, Fiume et al., 1997, DeVrueh et al. , 2000, Tu et al., 2004, Erion et al., 2005, 

Reddy et al., 2005) have attempted to target antiviral drugs to the liver for the 

treatment of HBV infection. 

Dextrans are glucose polymers, which are under investigation as 

macromolecular carriers for delivery of drugs and other therapeutic agents, such as 

proteins, after the systemic administration of the dextran-drug conjugates (Larsen et 

al. , 1989, Takakura et al, 1995, Mehvar, 2000, Mehvar, 2003). Additionally, 

conjugates of dextrans with non-steroidal (Harboe, et al., 1989, Larsen et al., 1989) and 

steroidal (McLeod et al. , 1993, McLeod et al., 1994) anti-inflammatory drugs have 

been studied for local delivery of these drugs to the colon. In a series of studies 

(Mehvar, 1997, Mehvar et al., 1995, Mehvar et al., 1994), we previously showed that 

the plasma kinetics and tissue distribution of dextran carriers are dependent on the Mw 

of the polymer. Therefore, dextrans of different Mw's may be useful for the delivery of 

drugs to different tissues after the systemic administration of the conjugate. For 

example, dextrans with Mw' s of 20 kDa to 70 kDa showed a high degree of selectivity 
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for the liver when liver:plasma area under the concentration-time curve (AUC) ratio 

was considered (Mehvar et al., 1994). The liver selectivity of these dextrans was 

attributed to their sizes, which restrict their passage through most vascular bed pores, 

while allowing unrestricted passage through the substantially larger pore sizes of the 

liver sinusoids (Mehvar et al., 1994, Mehvar et al., 1987). 

In addition to the molecular weight, both the electric charge (Nakane et al. , 

1987, Nishida et al., 1990) and chemical modification (V ansteenkiste et al. , 1991 , 

Nishikawa et al., 1993) of dextrans may affect their organ and cellular distribution. 

For example, it has been reported that positively charged dextrans are taken up by the 

liver more rapidly and extensively than neutral or negatively charged dextrans 

(Nakane et al., 1987, Nishida et al., 1990). Additionally, whereas unmodified dextrans 

distribute to both parenchymal and non-parenchymal cells of the liver (Nishikawa et 

al, 1992), galactosylation or mannosylation of dextrans results in selective delivery of 

the macromolecule to the parenchymal and non-parenchymal cells, respectively 

(Vansteenkiste et al., 1991, Nishikawa et al., 1993). Because electrical or chemical 

modifications of dextrans may alter their safety profiles (Y arnaoka et al. , 1995), we 

have recently used unmodified neutral dextrans for delivery of methylprednisolone to 

the liver for local immunosuppression (Mehvar et al., 2000, Zhang et al., 2001 , 

Chimalakonda et al., 2006, Chimalakonda et al., 2003). These studies showed that 

after systemic administration, the conjugate selectively accumulates in the liver, where 

it gradually releases the active drug, resulting in more intense and sustained 

pharrnacologic effects. Collectively, the above studies suggest that both unmodified 
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and glycosylated dextrans may be suitable for systemic delivery of therapeutic agents 

to the liver. 

The aim of the present study was to synthesize and characterize a conjugate of 

3TC with dextran -25 kDa, intended for selective delivery of the anti-HBV drug to the 

liver. The conjugation of 3TC to dextran was achieved through a succinate linker, 

resulting in a macromolecular prodrug, potentially releasing 3TC and 3TC succinate 

(3TCS). Therefore, analytical methods were also developed for quantitation of the 

intact prodrug and simultaneous quantitation of its potential release products (3TC and 

3TCS) in biological samples. In addition to in vitro characterization, the plasma 

pharrnacokinetics and tissue disposition of the prodrug and parent drug were also 

studied in rats, a species which has recently been used as a model for human HBV 

infection (Wu et al., 2003, Takahashi et al., 1995, Wu et al., 2001). To the best of our 

knowledge, this is the first report of designing a macromolecular prodrug of anti-HBV 

drug larnivudine for targeted delivery to the liver. 

6.3. Material and Methods 

6.3.1. Materials 

Dextran with an average M..11 of -25 kDa (actual .Uv=23,500 Dalton) was 

purchased from Dextran Products (Scarborough, Ontario, Canada). Lamivudine (3TC) 

was purchased from Kemprotec (Middlesbrough, U.K.). Stavudine and kits for liver 

lysosomal isolation and acid phosphatase were purchased from Sigma Chemical (St. 

Louis, MO). For Chromatography, HPLC grade acetonitrile (Mallinckrodt Chromar 
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HPLC) was obtained from VWR Scientific (Minneapolis, MN). All other reagents 

were analytical grade and obtained through commercial sources. 

6.3.2. Animals 

Adult, male Sprague-Dawley rats were used in this study for in vitro blood and 

liver lysosome and in vivo disposition studies as outlined in the subsequent sections. 

All the procedures involving animals in this study were consistent with the "Principles 

of Laboratory Animal Care" (NIH publication Vol. 25, No. 28, revised 1996) and 

approved by the Texas Tech University Health Sciences Center Institutional Animal 

Care and Use Committee. 

6.3.3. Synthesis of 3TC-Succinate-Dextran (3TCSD) Conjugate 

The complete procedure for the synthesis of 3TCSD conjugate is depicted in 

Schemes 6.1 and 6.2 and described in detail below. The chemical structures of final 

desalted products were characterized by nuclear magnetic resonance spectrometry eH 
NMR, 13C NMR, 31P NMR) determined on a Bruker DPX NMR spectrometer (400 

MHz). 13C NMR spectra are fully decoupled. Chemical shifts are reported in parts per 

millions (ppm). The chemical structures of final products were confirmed by a high­

resolution PE Biosystems Mariner API 2000 time-of-flight electrospray mass 

spectrometer. 

(-)-4-N-(4,4'-Dimethoxytrityl)-5'-0-(succinate)-2',3'-dideoxy-3'-thiacytidine (6.1). 

4-Dimethylaminopyridine (DMAP, 100 mg, 0.82 mmol) and succinic anhydride (290 
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mg, 2.90 mmol) were added to a solution of (-)-N4-(4,4'-dimethoxytrityl)-2',3'­

dideoxy-3'-thiacytidine (2.12, 770 mg, 1.45 mmol) in dry pyridine (15.0 mL). 

Compound 2.12 was synthesized as described above in Chapter 2. The reaction 

mixture was stirred at room temperature overnight. After completion of the reaction, 

the solvent was evaporated under red~ced pressure and the crude compound was 

purified by column chromatography over silica gel using dichloromethane/methanol 

containing 1% triethylamine as the eluents to yield 6.1 (0.82 g, 90%). 1H NMR (400 

MHz, DMSO-d6, 8 ppm): 8.56 (br s, lH, NH), 7.60-7.70 (d, J = 7.8 Hz, lH, H-6), 

7.14-7.24 (m, 9H, aromatic hydrogens, DMTr), 6.72-6.84 (m, 4H, aromatic hydrogens, 

DMTr), 6.30-6.38 (m, lH, H-1'), 6.10 (d, J= 7.8 Hz, lH, H-5), 5.25-5.35 (m, lH, H-

4'), 4.22-4.34 (m, 2H, H-5' and H-5"), 3.71 (s, 6H, DMTr-OCH3), 3.58-3.63 (m, 2H, 

H-2' and H-2"), 3.00-3.10 (m, 4H, CH2CH2); HR-MS (ESI-TOF) (mlz): C33H33N30sS 

calcd, 631.1988; found 632.1715 [M +Ht, 654.1472 [M +Nat. 

(-)-5'-0-(Succinate)-2' ,3'-dideoxy-3'-thiacytidine (3TCS, 6.2). Acetic acid (AcOH, 

10 mL, 80%) was added to compound 6.1 (100 mg, 0.16 mmol). The reaction mixture 

was heated at 80 °C for 30 min. The solvent was removed under reduced pressure and 

the crude compound was purified by HPLC (acetonitrile/water gradient) to yield 6.2 

(47 mg, 90%). 1H NMR (400 MHz, DMSO-d6, 8 ppm): 12.29 (s, lH, COOR), 9.50-

9.80 (br s, 2H, NH2), 7.60-7.70 (m, lH, H-6), 6.20-6.32 (m, lH, H-1'), 5.81-5.93 (m, 

lH, H-5), 5.30-5.36 (m, lH, H-4'), 4.30-4.40 (m, 2H, H-5' and H-5"), 3.71-3.80 (m, 

2H, H-2'), 3.00-3.200 (m, 5H, H-2" and CH2CH2); HR-MS (ESI-TOF) (mlz): 

C12H1sN306S calcd, 329.0682; found 330.3316 [M +Ht, 658.3471 [2Mt. 
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(-)-Dextran-5'-0-(succinate )-2' ,3 '-dideoxy-3 '-thiacytidine (3TC-succinate-dextran 

conjugate, 3TCSD, 6.3). DMAP (70.0 mg, 0.57 mmol), N,N-diisopropylethylamine 

(DIPEA, 100 µL, 0.61 mmol), and N,N'-diisopropylcarbodiimide (DIC) (50 µL, 0.32 

mmol) were added to a solution of compound 6.1 (275.0 mg, 0.44 mmol) and dextran 

20 kDa (130 mg) in dry dimethylsulfoxide (DMSO, 3.0 mL) under nitrogen 

atmosphere. The reaction mixture was stirred at 40 °C for 48 h. After the completion 

of reaction, the reaction mixture was cooled to room temperature and cold diethyl 

ether: ethanol (45 mL, 50:50 v/v) was added. The mixture was washed twice with cold 

ethanol:diethyl ether (50:50, v/v) and finally with cold ethanol:acetonitrile (70:30, v/v) 

and centrifuged. The precipitate was dried under vacuum to give (-)-dextran-4-N-(4,4'-

dimethoxytrityl)-5'-0-(succinate)-2',3'-dideoxy-3'-thiacytidin 

dimethoxytrityl)-larnivudine-succinate-dextran conjugate, 6.3]. 

[4-N-(4'-

Acetic acid (AcOH, 10 mL, 80%) was added to compound 6.3. The reaction 

mixture was stirred at room temperature for 3 hand then heated at 80 °C for 30 min. 

The solvent was removed under reduced pressure and the residue was washed three 

times with cold diethyl ether:ethanol (45 mL, 50:50 v/v) and centrifuged to give 3TC­

succinate-dextran conjugate (3TCSD, 6.4). 1H NMR (400 MHz, D20, ()ppm): 7.88-

8.04 (br s, lH, H-6), 6.25-6.35 (m, lH, H-1'), 6.05-6.15 (br s, lH, H-5), 5.41-5.50 (m, 

lH, H-4'), 4.85-5.05 (m, anomeric hydrogen of dextran, H-1), 4.28-4.58 (m, 2H, H-5' 

and H-5"), 3.40-4.10 (m, H-2' and H-2" of 3TC, H-2, H-3, H-4, H-5, and H6 of 

dextran), 3.30-3.38 (m, 4H, CH2CH2 of succinate). 
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6.3.4. Further Characterization of 3TC-Succinate-Dextran Conjugate (3TCSD, 

6.4) 

The purity of the powder was determined using both the size exclusion (SEC) 

and reversed-phase (RPC) chromatographic methods. The degree of substitution of 

3TC in 3TCSD was determined by hydrolysis of the conjugate under basic conditions. 

To 1 mg of the conjugate were added 1 mL of 0.1 N NaOH and 0.6 mL of methanol. 

After leaving at room temperature for 5 min, 30 min, and 24 h, 100 µL of the sample 

was micropipetted into a microcentrifuge tube containing 100 µL of 0.1 M HCl. An 

aliquot (50 µL) was then injected into HPLC. The concentration of the released 3TC 

was determined using a reversed-phase method based on 3TC standard solutions as 

described below. 

6.3.4.1. High Performance Liquid Chromatography 

Size-exclusion (SEC) and reversed-phase (RPC) chromatographic methods 

were developed and validated for quantitation of the conjugate 3TCSD and its 

potential hydrolysis products (3TC and 3TCS), respectively, in buffers or biological 

samples. 

6.3.4.1.1. Size-Exclusion Liquid Chromatography (SEC) 

Lamivudine-succinate-dextran conjugate (3TCSD) was analyzed in non­

biological and biological (plasma and tissue) samples at ambient temperature using a 

30 cm x 7.8 mm analytical, gel chromatography column (PolySep-GFC 3000; 
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Phenomenex, Torrance, CA). The mobile phase consisted of water:acetonitrile:acetic 

acid (75:25:0.2, v/v/v) and was pumped at a flow rate of 1.0 mL/min. 

6.3.4.1.2. Reversed-Phase Liquid Chromatography (RPC) 

A reversed-phase chromatographic method was developed to quantitate the 

concentrations of 3TC and 3TCS in aqueous and biological samples. The separation of 

3TC, 3TCS, and internal standard (stavudine, IS) was achieved on a 250 mm x 4.6 mm 

Cl8 column (Microsorb-MV, Varian, Lake Forest, CA) preceded by a 5-cm guard 

column. The mobile phase consisted of KH2P04 (50 mM):methanol:triethylamine 

(90:10:0.1, v/v, pH 7.0), which was pumped at a flow rate of 1 mL/min. 

6.3.4.2. HPLC System 

The HPLC instrument consisted of a 510 pump (Waters; Milford, MA), a 717 

plus auto sampler (Waters; Milford, MA), and a 486 UV detector (Waters) set at a 

wavelength of 276 nm. The chromatographic data was managed using Empower 

version 2 software. Calibration curves were constructed by plotting the peak areas of 

3TCSD or peak area ratios of 3TC or 3TCS over IS against the concentration in the 

sample using a weight of 1/concentration. 

6.3.4.3. Sample Preparation 

For the size exclusion chromatography, to 100 µL of plasma in 

microcentrifuge tubes were added 20 µL of methanol and 20 µL of 20% (w/v) 

trichloroacetic acid. After vortex mixing for 5 s, the samples were centrifuged in a 
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microcentrifuge at 16,000 rpm for 5 min. A 100 µL aliquot of the supernatant was 

mixed with 50 µL of 0.5 M phosphate buffer (pH 6.0), and a 75-µL aliquot was 

injected into the HPLC. 

To determine the concentrations of 3TCSD in the tissues by the SEC method, 

tissues were homogenized in 3 volumes of water using a homogenizer at a rate of 

10,000 rpm. To 100 µL of the whole homogenate in siliconized microcentrifuge tubes 

were added 50 µL of 0.5 M phosphate buffer (pH 7.0) and 50 µL of cold methanol. 

Samples were then briefly vortex-mixed and 40 µL of trichloroacetic acid (40%) was 

added to precipitate proteins. After vortex-mixing for 5 s, the samples were 

centrifuged in a microcentrifuge at 10,000 rpm for 3 min. A 100 µL aliquot of the 

supernatant was mixed with 50 µL of 1 M sodium acetate, and a 75-µL aliquot was 

injected into the HPLC. 

The preparation of plasma samples for reversed-phase chromatography was 

similar to that for the SEC method with one exception; for the reversed-phase system, 

50 µL of 50 µg/mL stavudine was added as internal standard to the plasma sample 

before protein precipitation. Similarly, the tissue samples for reversed-phase 

chromatography were prepared as described above for the SEC method, but without 

the addition of 0.5 M phosphate buffer. 
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6.3.4.4. Validation of Assays 

The inter-run precision (%CV) and accuracy (%error) of the assays were 

detennined from the analysis of quality control samples (n = 5) based on reported 

guidelines (Shah et al., 1992). The concentrations of quality control samples were 1.0, 

10, or 50 µg/mL for 3TCSD (SEC method), 0.125, 5.0, and 20 µg/mL for 3TC (RPC 

method), and 0.36, 5.4, and 18 µg/mL for 3TCS (RPC method). Calibration curves for 

SEC of 3TCSD contained 0, 1, 2, 5, 10, 15, 25, or 50 µg/mL of the prodrug (3TC 

equivalent). For RPC, calibration curves consisted of 0.0, 0.125, 0.25, 0.5, 1.0, 2.0, 

5.0, 10, or 20 µg/mL of 3TC and 0.0, 0.36; 0.72, 1.80, 3.6, 5.4, 9.0, or 18 µg/mL of 

3TCS as 3TC equivalents. 

To determine the recovery of 3TCSD, 3TC, and 3TCS from plasma after 

protein precipitation, plasma samples (n = 5) containing 5 or 100 µg/mL 3TCSD, 5 or 

50 µg/mL 3TC, or 1.8 or 18 µg/mL 3TCS were subjected to the above assays and the 

peak areas were determined. The peak areas of these samples were then compared 

with those containing an equal concentration of each analyte in distilled water, 

injected directly into the HPLC. Similarly, the recoveries of 3TCSD and 3TC from the 

liver samples (n = 5) containing 5 µg/mL 3TCSD or 0.5 µg/mL of 3TC were 

determined. 
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6.3.5. In Vitro Release Characterization. 

6.3.5.1. Release Characteristics in Buffers. 

The prodrug (3TCSD), at a concentration equivalent to 100 µg/mL 3TC, was 

dissolved in 10 rnM KH2P04 (pH 4.4) or phosphate buffer (pH 7.4). The solutions 

were then incubated at 37 °C (n = 3). Samples (100 µL) were taken at 0, 3, 6, 12, and 

24 hand subjected to the above HPLC methods for the quantitation of intact 3TCSD 

(SEC method) and released 3TC or 3TCS (RPC method). 

6.3.5.2. Release Characteristics in Rat Blood 

Blood was obtained from rats by cardiac puncture. Approximately 4 ID of 

heparin was added to each rnL of blood to prevent coagulation. Immediately after the 

collection of blood, 3TCSD conjugate (in 10 rnM isotonic phosphate buffer at pH 7.4) 

was added to produce a blood concentration of 100 µg/rnL (3TC equivalent) (n = 3). 

The solution was then incubated at 37 °C. Blood samples (1 rnL) were collected at 0, 

3, 6, and 12 h in heparinized microcentrifuge tubes. After centrifugation of the blood, 

the plasma samples (100 µL) were subjected to the assays described above for the 

determination of 3TC, 3TCS, and/or intact 3TCSD. 

6.3.5.3. Release Characteristics in Rat Liver Lysosomes 

Crude lysosomal fractions were prepared from the liver of untreated rats 

according to the procedure described in the lysosome isolation kit (Sigma). Briefly, 

the rat livers were perfused with ice-cold PBS before removal of the livers. The livers 
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were then homogenized in 4 volumes of the extraction buffer, followed by differential 

centrifugation for isolating the lysosomal fraction. The protein concentrations in 

Iysosomal preparations were determined by Bio-Rad protein assay (Bio-Rad, 

Herecules, CA, USA). The activity of acid phosphatase, a lysosomal marker, in the 

preparation was tested using a commercial kit (Sigma). The specific enzyme activity 

in the lysosomal fraction was >9-fold that in the liver homogenate. 

For lysosomal hydrolysis studies, 3TCSD (100 µg/mL, 3TC equivalent) was 

incubated at 37 °C in 50 mM acetate buffer (pH 4.0) in the presence of 5 mM reduced 

glutathione and 5 mg/rnL lysosomal protein (n = 3). Samples (100 µL) were then 

taken at 0, 3, 6, 9, 12, and 24 hand treated as described above before reversed-phase 

and size-exclusion HPLC analysis. 

6.3.6. In Vivo Disposition 

A total of 42 adult male Sprague-Dawley rats were divided equally into two 

groups of 21 rats each, treated with 3TCSD or 3TC. The mean± S.D. of the body 

weights of rats were 241 ± 8 and 240 ± 6 g for the 3TCSD- and 3TC-injected groups, 

respectively. The animals had free access to drinking water and rat chow before and 

during the course of experiments. 

Single iv bolus doses (5 mg/kg; 3TC equivalent) of 3TCSD or the parent drug 

3TC were injected into the penile vein of the animals under isoflurane anesthesia. 

Different groups of rats (n = 3/group/time point) were euthanized at 0 (before drug 

administration), 5, 15, 60, 120, or 180 min following drug administration, and tissues 
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(liver, spleen, kidneys, heart, lungs, and brain?) and blood (cardiac puncture) were 

collected. Additionally, total urine output was collected from zero to 180 min or to 24 

h for the 3TC- or D3TCS-injected group (n = 3/group). 

Immediately after excision, the tissues were rinsed in ice-cold saline solution 

to remove excess blood. Afterwards, the tissues were blotted dry and kept frozen until 

analysis. After centrifugation of the blood in a pre-chilled and heparin-coated 

rnicrocentrifuge tube, the plasma was collected. To prevent in vitro hydrolysis of 

3TCSD during storage, plasma (500 µL) was mixed with a 10% acetic acid solution 

(100 µL). Plasma, tissue, and urine samples were kept frozen at - 80 °C until analysis. 

6.3.7. Pharmacokinetic Analysis 

Non-compartmental analysis was performed by usmg WinNonlin"'5.0.1 

computer program (Pharsight Co.; Mount View, California). Terminal elimination rate 

constant (/1.z) was estimated from the log-linear portion of the plasma or tissue 

concentration-time courses. Area under the plasma or tissue concentration-time curve 

(AUC) was estimated from the average plasma or tissue concentrations at different 

time points using linear trapezoidal rule with extrapolation to infinity only for the 

plasma profiles. For tissues, AUCs were not extrapolated beyond the quantifiable 

samples because of uncertainty about the terminal half lives. Other estimated 

pharmacokinetic parameters included: apparent total body clearance (CL), renal 

clearance (CLR), volume of distribution at steady-state (V55), terminal volume of 

distribution (V z), fraction of the drug excreted unchanged in urine (fe), mean residence 
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time (MRT), and maxrmum observed drug concentration (Cmax). The maxunum 

concentrations of 3TCSD or 3TC in plasma (Co) after the injection of the conjugate or 

parent drug were estimated by the program. The concentrations of drugs in the tissues 

were corrected (Mehvar et al., 1994) for the residual blood using the blood volume 

fraction of different tissues. 

6.3.8. Statistical Analysis 

Because of destructive sampling procedure used for the collection of blood and 

tissues from different animals at each time point, the composite kinetic parameter 

AUC could not be obtained for individual rats (Mehvar et al., 1994). Therefore the 

variance of AUC was estimated by a reported (Bailer et al., 1988, Yuan et al., 1993) 

procedure based on the standard error of mean and number of samples at each time 

point. The pairwise comparison of AUCs was then carried out at an a level of 0.05 

and a Bonferroni-adjusted a of 0.05 or 0.0167 for pairwise comparison of two (1 

comparison) or three (3 comparison) means, respectively. The critical values of Z 

(Zcrit) for the two-sided test using the Bonferroni-adjusted a of 0.05 and 0.0167 were 

1.96 and 2.39, respectively, and the observed Z (Zobs) was calculated as reported 

before (Bailer et al., 1988, Yuan et al., 1993). A Zobs value > Zcrit was used as an 

indication of a significant difference between the AU Cs. 

The differences between groups in their kinetic parameters that could be 

estimated for individual rats (e.g., Cmax and CLR) were determined using a two-tailed 

unpaired t test at a significance level (a) of 0.05. When possible, data are presented as 

mean ± S.D. 
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6.4. Results and Discussion 

Targeted delivery of anti-HBV drugs to the liver, for the treatment of viral 

hepatic diseases, has attracted the attention of scientists for several years. In one of the 

first publications on this subject, Balboni et al. showed that conjugation of cytosine 

arabinoside and 5-fluorodeoxyuridine to albumin resulted in accumulation of these 

antiviral drugs in the mouse liver cells, increasing the effectiveness of the drugs in 

comparison with the free drugs (Balboni et al, 1976). Further works by Fiume and 

colleagues (Fiume et al., 1997) modified this strategy by the use of lactosaminated 

albumin as the carrier, selectively targeting the asialoglycoprotein receptors on the 

hepatocytes with the galactose moiety of lactose. Additionally, conjugates of antiviral 

drugs with galactosylated poly-L-lysine, instead of albumin, have been .synthesized 

and tested by the same group (Fiume et al., 1986, Fiume et al., 1997). Others have 

used arabinogalactan (Enriquez et al., 1995) or glycosylated lipoproteins 

(Bijsterbosch et al., 1996, DeVrueh et al., 2000), as liver-accumulating carriers, or 

prodrugs that release the active drug based on metabolism by hepatic cytochrome 

P450 (Erion et al., 2005, Reddy et al., 2005) for targeted delivery of antiviral drugs to 

the liver. These studies support the general concept that targeted delivery of antiviral 

drugs to the liver potentially increases the efficacy of these drugs in the treatment of 

viral liver infections while, at the same time, decreasing their toxic effects in other 

tissues. However, the choice of carrier and targeting moieties need optimization to 

reduce carrier-related side effects, such as increased alkaline phosphatase levels seen 

with lactosylated human serum albumin (Fiume et al., 1997), or to improve drawbacks 
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associated with variability in density and affinity seen with the asialoglycoprotein 

receptors (Rensen et al., 1996). 

6.4.1. Synthesis and Characterization of 3TCSD 

In addition to our study, we are aware of only one other study that used dextran 

as a macromolecular prodrug of antiviral agents (Tu et al., 2004). In that study, 

acyclovir was conjugated to dextran with a Mw of 40 kDa. However, to synthesize the 

conjugate, dextran was first oxidized to dextran aldehyde before direct reaction of the 

aldehyde groups of dextran with the amine group of acyclovir to produce a Schiff s 

base, without any spacer between acyclovir and dextran. Modification of dextrans, 

including their oxidation, may alter the degradation and safety profiles of native 

dextrans, which have been used clinically for almost six decades as plasma volume 

expanders (Thoren, 1981 ). Therefore, we designed this strategy for conjugation of 

3TC to dextran to minimize changing the structure of native dextran molecule. 

Consequently, 3TC was coupled to dextran through a succinate linker, thus avoiding a 

need for oxidation of dextran as previously reported (Tu et al., 2004). 

In the present study, we used dextran with a Mw of -25 kDa as an alternative to 

the currently studied carriers for the selective delivery of 3TC to the liver in HBV 

treatment. The synthesis of the conjugate was challenging because of the presence of 

free N4-amino group in the structure of 3TC, which had to be protected before the 

reaction of 3TC with succinic anhydride for the synthesis of 3TCS. Lamivudine (3TC) 

was conjugated to dextran using a succinate linker in two major steps by synthesis of 
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5'-0-succinate ester of the drug (Scheme 6.1), followed by the reaction of the ester 

conjugate with dextran (Scheme 6.2). 

In this study, Larnivudine was initially reacted with TBDMS-Cl in the 

presence of imidazole to yield 5' -0-TBDMS-larnivudine (2.4). The protection of N4-

amino group of 5'-0-protected larnivudine was carried out in the presence ofDMTr-Cl 

and pyridine to give N4-DMTr-5'-0-TBDMS-larnivudine (2.11). The deprotection of 

5' -0-TBDMS in the presence of tetrabutylarnrnoniurn fluoride (TBAF) afforded N4-

DMTr derivative of larnivudine (2.12). This strategy was described in detail in 

Chapter 2. 

Compound 2.12 was used in the reaction with succinic anhydride to generate 

N4-DMTr-5'-0-succinate ester conjugate of larnivudine (6.1) (Scheme 6.1). 

Compound 6.1 was reacted with dextran in the presence of DIC and DMAP to afford 

N4-(DMTr)larnivudine-succinate-dextran conjugate (6.3) that was deprotected in the 

presence of acetic acid to afford larnivudine-succinate-dextran conjugate (3TCSD, 6.4) 

with a reasonable degree of 3TC substitution (6.5%, w/w) (Scheme 6.2). 
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,DMTr 

;tN l ~ succinic anhydride, DMF, 

H01.--J o pyridine, DMAP 

s 
2.12 6.1 

80% Acetic acid 

Scheme 6.1. Synthesis of 4-N-(4,4'-Dimethoxytrityl)-5'-0-(succinate)-2',3'-dideoxy-

3'-thiacytidine (6.4). 

The purity of the conjugate was > 99% as determined by the reversed phase 

analysis of a 100-µg/mL solution of the conjugate (n = 3), which contained only 0.296 

± 0.041 µg/mL of 3TC without any measurable peak of 3TCS. The degree of 

substitution of the final product, which was obtained by the base hydrolysis of 3TCSD 

to 3TC followed by reversed-phase quantitation of the released 3TC, was 6.5 mg 

larnivudine in 100 mg of 3TCSD powder. The complete hydrolysis of 3TCSD was 

confirmed by a complete disappearance of the 3TCSD peak in the SEC method. 

Additionally, the area of the unhydrolyzed 3TCSD peak in the SEC method was the 

same as the area of the released 3TC peak in the reversed-phase method after 
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appropriate volume correction, indicating that the degree of substitution may be 

determined directly from the area of 3TCSD peak without hydrolysis. 

6 .1 

80% Acetic acid 

Dextran 25 kDa, DIC, 
DMAP, DMSO, DIPEA 

6.4 

Scheme 6.2. Synthesis of 3TCS-Dextran (3TCSD, 6.4). 

6.4.2. Size-Exclusion Chromatographic Method 

6.3 

Larnivudine-succinate-dextran (3TCSD) has two ester bonds in its structure 

(Scheme 6.2), whose hydrolysis potentially releases 3TC or 3TCS. Therefore, to 

completely determine the fate of the conjugate and its potential release products in 

both in vitro and in vivo experiments, analytical methods capable of measurement of 

all three moieties are needed. To quantitate 3TCSD in both aqueous and biological 

samples, a SEC assay was developed. The method is capable of separating the 

conjugate peak from the endogenous peaks (Figure 6.1) and accurately and precisely 

quantitating the conjugate (Table 6.2). 
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Chromatograms of plasma samples taken from a rat before (blank) and 180 

min after the administration of a single 5-mg/kg dose (3TC equivalent) of 3TCSD are 

demonstrated in Figure 6.1. Dextran-lamivudine succinate eluted at -5.3 min and was 

well separated from the endogenous peaks in plasma, which eluted after the conjugate 

peak (Figure 6.1 ). Additionally, the relationship between the peak area of 3TCSD and 

the detector response was linear (/ 2: 0.998) over the studied range 1 to 50 µg/mL. 

The results of the assay validation in plasma are presented in Table 6.1. 

Excellent accuracy of the assay is demonstrated by error values of < 1 % for all the 

concentrations (even at the lowest concentration of 1 µg/mL). The assay is also 

deemed precise because the C.V. values are < 13% for the inter-run data (Table 6.1). 

Based on the data presented in Table 1, the limit of quantitation of the assay is at least 

equal to 1 µg/mL. 
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Figure 6.1. Chromatograms of plasma samples taken from a rat before (A) and 180 
min after (B) the administration of a single 5 mg/kg dose (3TC equivalent) of 3TCSD, 
subjected to the size-exclusion chromatographic method. The 180 min sample 
contained 9.70 µg/mL 3TCSD. 
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Table 6.1. Inter-Run Accuracy and Precision for Quantitation of 3TCSD using the 
SEC Assay (n = 5) 

Added Cone. Calculated Cone. 
CV Error (µg/mL) (µg/mL) 
(%) (%) 

1 0.992 12.8 -0.84 

10 10.1 2.34 0.70 

50 49.6 1.60 -0.80 

The recovery of 3TCSD from plasma was 88.0 ± 4.2% and 94.1 ± 4.6% at 

concentrations of 5 and 50 µg/mL, respectively. The recovery of 3TCSD from liver 

was 94.2 ± 9.5% at a concentration of 5 µg/mL. 

6.4.3. Reversed-Phase Chromatographic Method. 

Several HPLC assays are currently available for determination of 3 TC m 

plasma and/or tissues (Zhou et al., 1997, Kenney et al., 2000, Zheng et al., 2001, 

Alnouti et al., 2004, Bezy et al., 2005, Kano et al., 2005). These assays use either 

solid-phase extraction (Kenney et al., 2000, Zheng et al., 2001, Bezy et al., 2005) or 

protein precipitation (Zhou et al., 1997, Alnouti et al., 2004, Kano et al., 2005) for 

sample preparation. Additionally, all of them use reversed-phase chromatography with 

C1s (Zhou et al., 1997, Kenney et al., 2000, Bezy et al., 2005), Cs (Kano et al., 2005), 

or phenyl ( Zheng et al., 2001, Alnouti et al., 2004) columns for separation of 3TC 

from the endogenous peaks. To quantitate both 3TC and 3TCS simultaneously in our 

samples, we had to modify these assays. We found that a protein precipitation method 

with a combination of methanol and trichloroacetic acid resulted in the highest 
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recovery (2'.:. 86%) for both 3TC and 3TCS from biological samples. Additionally, our 

chromatographic conditions resulted in complete separation of 3TC, 3TCS, and IS 

from the endogenous peaks (Figure 6.2) and accurate and precise quantitation of 3TC 

and 3TCS (Table 6.2). 

Figure 6.2 depicts the chromatograms of plasma samples at zero (blank) and 15 

min after the administration of a single 5-mg/kg dose of 3TC to rats and at 3 h after 

the in vitro incubation of 3TCSD in blood. Lamivudine, internal standard (stavudine), 

and 3TCS eluted at ~11, 17, and 26 min, respectively and were well separated from 

the endogenous peaks in plasma (Figure 6.2). Additionally, the relationship between 

the peak area ratios of 3TC and 3TCS and the sample concentrations was linear (r2 2'.:. 

0.998) over the studied concentration range of 0.125 to 20 µg/mL for 3TC and 0.36 to 

18 µg/mL (3TC equivalent) for 3TCS. 

Validation results for the reversed-phase assay of 3TC and 3TCS in plasma are 

presented in Table 6.2. Excellent accuracy of the assay is demonstrated by error values 

of< 11 % for all the concentrations. The assay is also deemed precise because the C.V. 

values are< 9% for all the concentrations except for the lowest concentration of 3TC, 

which showed an acceptable C.V. of 16.8% (Table 6.2). Based on the data presented 

in Table 6.2, the limit of quantitation of the assay is 0.125 and 0.36 µg/mL for 3TC 

and 3TCS, respectively. 
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Figure 6.2. Chromatograms of plasma samples taken from a rat before (A) and 15 min 
after (B) the administration of a single 5 mg/kg dose of 3TC to rats and at 3 h after in 
vitro incubation of 3TCSD with rat blood (C), subjected to the reversed-phase 
chromatographic method. Sample B contained 1.84 µg/rnL 3TC, and sample C 
contained 3.97 and 5.12 µg/rnL 3TC and 3TCS, respectively. 
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Table 6.2. Inter-Run Accuracy and Precision for Quantitation of 3TC and 3TCS in 
Plasma using the Reversed-Phase Assay (n = 5) 

Analyte Added Cone. (µg/mL) Calculated Cone. (µg/mL) CV(%) Error(%) 

3TC 0.125 0.138 16.8 10.9 

3TC 

3TC 

3TCS 

3TCS 

3TCS 

5.0 

20 

0.36 

5.4 

18 

4.75 

20.8 

0.378 

5.18 

18.8 

3.15 

5.83 

8.33 

4.18 

3.93 

-5.04 

4.00 

5.14 

-3.73 

4.32 

For 3TC, the degrees of recovery from plasma were 101 ± 1.8% and 104 ± 

1.8% at concentrations of 5 and 50 µg/mL, respectively. For 3TCS, the values were 

89.7 ± 8.5% and 85.7 ± 2.6% at concentrations of 1.8 and 18 µg/mL, respectively. 

The recovery of 3TC from the liver samples at a concentration of 0.5 µg/mL was 95.7 

± 5.25%. 

6.4.4. Release Characteristics in Buffers 

The SEC and reversed-phase HPLC assays described above were used to 

investigate the stability of 3TCSD and formation of 3TC and 3TCS at 37 °C in buffers 

at pH 4.4 (Figure 6.3) and blood at pH 7.4 (Figure 6.4). The conjugate was very stable 

at pH 4.4 as demonstrated by both SEC (Figure 6.3, top) and reversed-phase (Figure 

6.3, bottom) assays. The concentrations of 3TCSD did not significantly change over 

24 h of incubation at 37 °C at pH 4.4 (Figure 6.3, top). Additionally, reversed-phase 

analysis showed minor concentrations(< 1 % of the initial concentration of 3TCSD) of 

3TC and 3TCS released over the incubation time of 24 h (Figure 6.3, bottom). On the 

other hand, measurable hydrolysis of 3TCSD occurred at pH 7.4 (Figure 6.4). In the 
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SEC method, the concentrations of 3 TCSD declined - 16% during 24 h of incubation 

at pH 7.4 and 37 °C, with an apparent first-order half life of 108 h (Figure 6.4, top). 

The decline in the concentration of 3TCSD (Figure 6.4, top) was associated with an 

almost identical increase in the concentrations of free 3TC and 3TCS in the sample 

analyzed by the reversed-phase method (Figure 6.4, bottom). 

6.4.5. Release Characteristics in Rat Blood 

Figure 6.5 shows the decline in the 3TCSD concentration (top) and associated 

increases in the concentrations of 3TC and 3TCS (bottom), after incubation of the 

conjugate in rat blood at 37 °C. The total 3TC (3TC plus 3TC succinate) released 

during 12 h of incubation in blood was 8.45 ± 0.04% (Figure 6.5, bottom) in 

agreement with an equivalent decline (7.75 ± 0.80%) in the concentration of the 

prodrug in the SEC assay (Figure 6.5, top). The first-order half life of the decline in 

the 3TCSD concentration in plasma was 110 h. 

A comparison of 24-h degradation data at pH 7.4 (Figure 6.4) with 12-h 

degradation data in blood (Figure 6.5) suggests that the degradation of 3TCSD in 

blood is only due to a slow chemical hydrolysis of the conjugate. This is because the 

degradation half lives of 3TCSD in buffer at pH 7.4 and in blood are almost identical 

(108 and 110 h, respectively), indicating lack of enzymatic hydrolysis of the conjugate 

in blood. This data is consistent with our previous report on a dextran conjugate of 

methylprednisolone succinate, which similarly showed little, if any, enzymatic 

hydrolysis in blood (Mehvar et al., 2000). Nevertheless, the relatively long half life of 
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3TCSD in blood in vitro (110 h) indicates that the conjugate is stable in blood long 

enough for the uptake by the liver. 
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Figure 6.3. Average concentration-time courses of the intact 3TCSD (top) and 
released 3TC, 3TCS, and total 3TC (3TC plus 3TCS) (bottom) after incubation of the 
conjugate at pH 4.4 (37 °C). Error bars represent SD values (n = 3). Error bars for 
3TCSD are too small to be observable. 

243 



www.manaraa.com

,,,,-... 
~ 0 ._. 
c 
0 ·-...., ns ... ...... 
c: 
C1> 
(.) 

c 
0 
0 

c 
0 

.. -...... ns .... ...., 
c: 
Cl) 
(.) 
c 
0 
0 

120 

100 

80 

60 

40 

20 

0 

16 

12 

8 

4 

0 

0 

0 

4 

A · Total 
--fr-3TCS 
-0-3TC 

8 12 16 

4 8 12 16 

Time (Hours) 

20 24 

20 24 

Figure 6.4. Average concentration-time courses of the intact 3TCSD (top) and 
released 3TC, 3TCS, and total 3TC (3TC plus 3TCS) (bottom) after incubation of the 
conjugate at pH 7.4 (37 °C). Error bars represent SD values (n = 3). In most cases, 
error bars are too small to be observable. 
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Figure 6.5. Average concentration-time courses of the intact 3TCSD (top) and 
released 3TC, 3TCS, and total 3TC (3TC plus 3TCS) (bottom) after incubation of the 
conjugate in rat blood (3 7 °C). Error bars represent SD values (n = 3). In most cases, 
error bars are too small to be observable. 
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Figure 6.6. Average concentration-time courses of released 3TC after incubation of 
the conjugate in rat liver lysosomes or buffer (37 °C). Error bars represent SD values 
(n = 3). In most cases, error bars are too small to be observable. 

6.4.6. Release Characteristics in Rat Liver Lysosomes 

Previous works (Larsen et al., 1989, Zhang et al., 2001) on other ester 

conjugates of dextrans have proposed that the intact conjugates are resistant to the 

effects of esterases because of steric hindrance of dextrans. However, after exposure 

of the conjugate to dextranases, which depolymerize dextrans, esterases can hydrolyze 

the ester bonds in the conjugate. It has been reported (Larsen, 1989) that dextranases 

are present in lysosomes, predominantly in the liver. Additionally, dextrans enter cells 

via endocytosis, which results in their accumulation in the lysosomal compartments 
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(Lake et al., 1985, Stock et al., 1989). Therefore, lysosomal exposure of dextran 

conjugates to dextranases may facilitate their further enzymatic hydrolysis. In vitro 

data showed significant amounts of 3TC released at pH 4 only in the presence of rat 

liver lysosomes (Figure 6.6). It was found that the presence of lysosomes in the 

medium induced a slow release of 3TC (7.36 ± 0.30 µg/rnL after 24 h) without any 

detectable 3TCS. In contrast, the release of 3TC or 3TCS in the same medium in the 

absence of lysosomes was negligible (Figure 6.6). These results confirms our 

hypothesis of 3TC release in lysosomes 

6.4.7. In Vivo Disposition 

Plasma concentration-time courses of 3TCSD and 3TC after the injection of 

single 5-mg/kg (3TC equivalent) doses of the prodrug or the parent drug are depicted 

in Figure 6.7. After the injection of unconjugated 3TC, the drug was eliminated 

relatively rapidly and could not be detected at the last sampling time of 3 h (Figure 

6.7). In contrast, the concentrations of 3TCSD were several folds higher than those of 

3TC and remained high even at the last sampling time after the injection of the 

conjugate. The plasma concentrations of both 3TC and 3TCSD declined multi­

exponentially (Figure 6.7). Additionally, no quantifiable concentrations of 3TC or 

3TCS were detected in plasma of 3TCSD-injected rats. 

The plasma pharmacokinetic parameters of 3TC and 3TCSD after the injection 

of the parent drug or the prodrug are listed in Table 6.3. Conjugation of 3TC to 

dextran resulted in an almost forty-fold decrease in the total CL of the drug and a 

similar degree of increase in its plasma AUC. The decrease in total CL was associated 

with an eighty-fold decrease in the CLR of the drug when conjugated to dextran. 
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Consequently, the fraction of the drug excreted unchanged into urine decreased from 

65% for the parent drug to 31 % for the conjugate (Table 6.3). Additionally, dextran 

conjugation decreased the extent of distribution of the drug as reflected in V ss and V z 

values (Table 6.3), although to a lesser degree than that seen with the CL values (7-12 

fold versus 40-80 fold, respectively). The declines in both the clearance and volume of 

distribution upon conjugation resulted in longer terminal half life and MRT values for 

the conjugate, compared with the parent drug (Table 6.3). 
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Figure 6.7. Plasma concentration-time courses of the conjugated (3TCSD) and 
unconjugated (3TC) larnivudine after iv administration of single 5-mg/k:g doses (3TC 
equivalent) of 3TC or 3TCSD to rats. Standard deviation values are shown as error 
bars (n = 3 rats for each point). 
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The literature information about the pharmacokinetics of 3TC in rats is limited. 

We are aware of only one study reporting the plasma concentration-time course and 

AUC of the drug after a 230 mg/kg iv dose (Reddy et al., 2005). However, no other 

pharmacokinetic parameters were reported in that study. We estimated a CL value of 

27. l mL/min/kg from the AUC and dose values reported in that study. This value is 

very close to our value of 32.6 mL/min/kg after a much smaller dose of 5 mg/kg 

(Table 3), suggesting linear pharmacokinetics of 3TC in the dosage range of 5-230 

mg/kg. 

Table 6.3. Plasma Pharmacokinetic Parameters (Mean ± S.D.) of Unconjugated 
(3TC) and Dextran-Conjugated (3TCSD) Lamivudine after a Single iv Dose (5 
mg/kg, 3TC Equivalent) of 3TC or 3TCSD 

Parameter 

AUC, µg min/mL 

CL, mL/min per kg 

CLR, mL/min per kg 

fe, % 

Vz, mL/kg 

Vss. mL/kg 
'\ . -I 
flvz, min 

t112(Az), min 

3TC-Injected Rats 

3TC 

4.94 ± 0.93t 

153 ± 7t 

32.6b 

21.3 ± 2.1 t 

65.3 ± 6.5t 

1786b 

930b 

0.0183b 

37.9b 

3TCSD-Injected Rats0 

3TCSD 

52.5 ± 6.5 

5930 ± 153 

0.844b 

0.263 ± 0.089 

31.2 ± 10.6 

152b 

135b 

o.00554b 

125b 

MRT, min 28.5b 160b 
0 No quantifiable concentrations of3TC or 3TCS were detected in 
flasma after 3TCSD injection. 

Standard deviations could not be determined because of destructive sampling 
method. 
t Significantly different (P<0.05) from the corresponding value for the 3TCSD­
injected rats. 
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The hepatic concentration-time courses (top) and AUC values (bottom) of the 

conjugate and regenerated 3TC after the administration of the conjugate and those of 

3TC after the injection of the parent drug itself are depicted in Figure 6.8. After the 

injection of 3TC, the hepatic concentrations of the drug were measurable only in the 

first two samples; no detectable 3TC levels were found in the liver beyond 15 min 

following the administration of the parent drug (Figure 6.8, top). However, relatively 

high concentrations of 3 TCSD were detected until the last sampling point. This 

resulted in > fifty-fold higher (P<0.0001) AUCs for the conjugated 3TC, compared 

with the parent drug (Figure 6.8, bottom). Additionally, the conjugated 3TC slowly 

released 3TC in the liver (Figure 6.8, top) with an AUC that was approximately 2.5-

fold larger (P<0.0001) than that of the parent drug during the sampling time (Figure 

6.8, bottom). No measurable concentrations of 3TCS were found in the liver. 

Conjugation of 3TC to dextran substantially decreased both the CL and volume 

of distribution of 3TC (Table 6.3), while at the same time increasing the accumulation 

of the drug in the liver (Figure 8). A similar disposition pattern was also observed for a 

dextran prodrug of methylprednisolone with a succinate linker (Zhang et al., 2001). 

The simultaneous decrease in volume of distribution and increase in liver 

accumulation upon dextran conjugation is due to the relatively large pore sizes of the 

liver sinusoids in comparison with those in the vascular beds of most other organs, 

allowing unrestricted access of the conjugate to the space of Disse and internalization 

of the conjugate (Mehvar et al., 1994). 
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Because of limited number of liver samples with quantifiable 3TC 

concentrations after 3TC injection and slow apparent declines in the liver 

concentrations of the conjugate and regenerated 3TC after conjugate injection (Figure 

6.8, top), terminal half lives were not estimated for the liver. Consequently, liver AUC 

values depicted in Figure 6.8 (bottom panel) are related to the sampling period without 

extrapolation to infinity. However, the significant differences between the liver AUCs 

after 3TC and 3TCSD injections would be expected to be even larger if extrapolated 

AUCs were used. This is because the apparent decline in the 3TCSD or regenerated 

3TC concentrations was substantially slower than that in the liver concentrations of 

the parent drug (Figure 6.8, top). 

The slow decline in the 3TCSD concentrations in the liver (Figure 6.8, top) is 

in agreement with previous ex vivo studies using isolated perfused rat livers (Mehvar 

1997) showing that, once in the liver, the rate of exocytosis of dextrans from the liver 

cells is negligible. Therefore, the main reason for the decline in the liver 

concentrations of the conjugate is its elimination by the liver, which is relatively slow 

based on the in vitro studies in lysosomes (Figure 6.6). Nevertheless, in contrast to 

undetectable concentrations of 3TC in the liver beyond 15 min after the parent drug 

injection, high concentrations of the conjugate in the liver were associated with a 

gradual and sustained generation of the parent drug in this tissue (Figure 6.8). 
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Figure 6.8. Liver concentration-time courses (top) and AUC values (bottom) of 
parent (3TC) and/or conjugated (3TCSD) lamivudine after iv administration of single 
5 mg/kg doses (3TC equivalent) of 3TC or 3TCSD to rats. Standard deviation values 
are shown as error bars (n = 3 rats for each time point). Asterisks indicate significant 
differences from the other two groups. 
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The kidney concentration-time courses (top) and AUC values (bottom) of the 

conjugate and regenerated 3TC after the administration of the conjugate and those of 

3TC after the injection of the parent drug itself are depicted in Figure 6.9 and Table 4. 

In addition to the liver (Figure 6.8), kidney was the only other organ where high 

concentrations of the conjugated and regenerated 3TC were found (Figure 6.9). In 

contrast to the liver (Figure 6.8), however, relatively high and persistent 

concentrations of 3TC were found in the kidney even after the injection of the parent 

drug (Figure 6.9). Therefore, conjugation of 3TC with dextran did not increase the 

availability of free 3TC in the kidneys, as the AUCs of regenerated and parent 3TC 

were not significantly different (Figure 6.9). The substantial accumulation of the 

conjugate in the kidneys is consistent with the Mw dependency of the renal excretion 

of the carrier dextrans in rats (22). Whereas a significant portion of the dose of 

dextrans with Mw's of 4 kDa and 20 kDa was excreted into urine, renal excretion of 

dextrans with Mw' s of 70 kDa and 150 kDa was negligible. Interestingly, kidneys have 

been suggested as an extrahepatic site for virus replication in different models of HBV 

infection (Di Bisceglie et al., 1990, Ogston et al., 1989). Therefore, accumulation of 

the conjugate and release of 3TC in this organ, in addition to that in the liver, may be 

of potential therapeutic benefit in chronic HBV infection. 
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Figure 6.9. Kidney concentration-time courses (top) and AUC values (bottom) of 
parent (3TC) and/or conjugated (3TCSD) lamivudine after iv administration of single 
5 mg/kg doses (3TC equivalent) of 3TC or 3TCSD to rats. Standard deviation values 
are shown as error bars (n = 3 rats for each time point). Asterisk indicates significant 
differences from the other two groups. 
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In contrast to the liver (Figure 6.8) and kidneys (Figure 6.9), the concentrations 

of the conjugate and/or regenerated 3TC were very low or undetectable in the lungs, 

spleen, and heart (brain) after 3TCSD injection (data not shown). Additionally, no 

released 3TC could be detected in these tissues. The concentrations of 3TC after 3TC 

injection in organs other than kidney were also low or below the limit of detection in 

most of the samples. 

Although our conjugate released both 3 TC and 3 TCS in vitro in buffers 

(Figures 6.3 and 6.4) and rat blood (Figure 6.5), only 3TC was observed in biological 

samples after in vivo administration of the conjugate (Figures 6.8 and 6.9). This 

suggests rapid conversion of any released 3TCS to 3TC in vivo. Our previous work on 

a methylprednisolone-succinate-dextran conjugate (Zhang et al., 2001) also showed 

similar results, in that no measurable concentrations of methylprednisolone succinate 

were found in biological samples after the administration of the conjugate to rats. The 

rapid conversion of 3TCS to 3TC in vivo is advantageous because 3TCS is not 

expected to have any biological effects by itself. This is due to the fact that to be 

effective, 3TC should undergo stepwise phosphorylation at the 5'-position to 

monophosphate, diphosphate, and triphosphate form before 5'-triphosphate 3TC is 

incorporated into the viral DNA (Johnson et al., 1999). Therefore, 3TCS, which has a 

succinate moiety at the 5 '-position (Schemes 6.1, and 6.2), cannot be converted to the 

active 5' -triphosphate 3TC without first being converted to 3TC. 
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The tissue exposure to 3TC after the administrations of the equivalent doses of 

the conjugate and the parent drug is the most relevant parameter in terms of targeting 

index. The ratios of 3TC AUCs after the conjugate and parent drug administration 

were 2.41 for the liver, 0.721 for the kidneys, and zero for the remaining studied 

tissues. These data clearly show that the conjugation of 3TC to dextran only increased 

the targeting of the drug to the liver. On the other hand, conjugation decreased 

accumulation of 3TC in all the other tissues except the kidneys, where conjugation did 

not have any significant effect. The significantly higher accumulation of 3TC in the 

liver is in conformity with the hypothesis of the study, i.e., conjugation of 3TC with 

dextran allows preferential accumulation of the drug in the liver. 

6.5. Conclusions 

In conclusion, a method is presented for the synthesis of a conjugate of native 

dextran with the antiviral drug 3TC using a succinate linker. Additionally, validated 

size-exclusion and reversed phase assays are developed for the determination of 

purity, in vitro release characteristics, and in vivo disposition of 3TCSD. Using these 

methods, the parent conjugate and its degradation products, 3TC and 3TCS, may be 

quantitated in non-biological and biological samples. In vitro studies indicate an 

evidence of lysosomal degradation and relative stability of the conjugate in buffers 

and blood. Additionally, in vivo studies after the administration of the conjugate or the 

parent drug to rats suggest that the conjugation increases the delivery of the drug to the 

liver, resulting in higher exposure of the liver to the regenerated antiviral drug. 
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7.1. Abstract 

Sulfonate and sulfate polyanionic microbicides, such as sodium cellulose 

sulfate (CS, 7.1), are inhibitors of HIV entry and sperm-function. CS was first reacted 

with 2-bromoacetic acid to yield CS-acetate (CSA, 7.2), which was further reacted 

with AZT, FLT, and 3TC to give AZT-CSA (7.3, 1.78% loading), FLT-CSA (7.4, 

1.43% loading), and 3TC-CSA (7.5, 1.07% loading), respectively. Furthermore, CS 

was conjugated to nucleoside analogs (AZT, FLT, and 3TC) through succinate linker 

to produce bifunctional nucleoside-CS conjugates. For the synthesis of the conjugates 

containing succinate linker, CS was reacted with AZT-succinate and FLT-succinate to 

give AZT-succinate-CS (7.6, 18.48% loading) and FLT-succinate-CS (7.7, 7.87% 

loading), respectively. These conjugates were designed to improve the anti-HIV 

profile of parent compounds. It was expected that extracellular hydrolysis of 

conjugates will release nucleosides and CS providing broad-spectrum activity, a 

higher barrier to drug resistance, microbicidal, and contraceptive activity. The anti­

HIV activities of the conjugates were evaluated and were compared with the 

corresponding physical mixtures of nucleoside analogs and anionic polymers and with 

different classes of polyanionic polymers, such as dextran acetate, cellulose phosphate, 

and cellulose acetate. Cellulose acetate, cellulose phosphate, and dextran acetate were 

found to have no anti-HIV activities, suggesting the importance of the presence of 

sulfate on the cellulose for generating anti-HIV activities. The conjugates containing 

CS-acetate were found to be more potent than CS and other derivatives. AZT-CSA 

(7.3) and FLT-CSA conjugates (7.4) exhibited higher anti-HIV activities than CS (7.1) 

and AZT-succinate-CS and FLT-succinate-CS-conjugates (7.6 and 7.7). The presence 
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of both sulfate and the acetate groups on cellulose were critical for generating 

maximum anti-HIV activity, possibly by increasing the negative charge density that is 

essential for blocking HIV entry. However, the compounds were less potent than the 

corresponding physical mixtures of nucleoside analogs with CSA (7.2), due to 

incomplete hydrolysis. 

7.2. Introduction 

Sulfonate and sulfate polyanionic microbicides inhibit the HIV entry into the 

cell (Chan and Kim, 1998; Gao et al., 1999; Ketas et al., 2003; Vlieghe et al., 2002) 

and sperm-function (Anderson et al., 2000). Sodium cellulose sulfate (Ushercell, CS) 

is a polyanionic non-cytotoxic microbicide and its 6% gel has been studied as vaginal 

contraceptive and a broad spectrum antimicrobial agent (Mauck et al., 2001, Malonza 

et al., 2005). 

Polyanionic sulfates are the polymers such as dextran, cellulose, styrene etc 

with sulfate groups in their structure (Bugatti et al., 2007, Moulard et al., 2000, Gao et 

al., 1999, Vlieghe et al., 2002). The negatively-charged sulfate group interacts with 

positively-charged viral protein (Shattock et al., 2002). Viral envelop protein gp120 is 

know to have positively charged residues in its V3 loop. Viral entry in the host cell 

depends on the interaction with the negatively-charged surface of the coreceptors 

CXCR4 and CCR5 (Kajumo et al., 2000). Polyanionic sulfates exhibit their inhibitory 

activity by blocking the interaction between negatively-charged coreceptors and 
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positively charged V3 loop of viral gp120 protein (D'Cruz et al., 2004, Baba et al., 

1998, Turpin, 2002). 

Different strains of HIV are known to have different V3 loops and therefore 

show different interactions with the host cell. X4-strains of HIV possess a higher 

positive charge density on their V3 loop than R5 strains of virus (Shattock ~t al., 2002, 

Meylan et al., 1994). This property of X4 makes them susceptible to polyanionic 

inhibitors. On the other hand, several polyanionic derivatives like dextran sulfate and 

heparin show insignificant activity against R5 strain of virus (Scordi-Bello et al., 2005, 

D'Cruz et al., 2004). 

Similar to other polyanionic derivatives, sodium cellulose sulfate (CS, 7.1), 

interacts with the positively-charged viral envelope proteins, and prevents the virus 

from interaction with coreceptors. Various studies show that CS possesses significant 

anti-HIV activity against both the strains of virus, but it is more active against X4 

strain (IC5o = 0.65 µg/rnl) than R5 strain (IC5o = 18.67 µg/ml) of virus (Scordi-Bello et 

al., 2005, Neurath et al., 2002). The ability of CS to inhibit both strains of virus 

efficiently suggests that some additional mechanism may be involved for viral 

inhibition (Scordi-Bello et al., 2005, Neruth et al., 2002). 
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Other than the anti-microbial activity, CS also shows contraceptive activity 

because of its ability to reversibly inhibit hyaluronidase (IC50 = 1.7 mg/ml), which is 

an important enzyme for the interaction of spermatozoa with the egg (Anderson et al., 

2002). CS also inhibits sperm penetration of cervical mucus membrane (Anderson et 

al. , 2002). 

CS showed promising results in the preclinical studies, phase I and phase II 

clinical trials sponsored by CONRAD. In preclinical studies, CS prevented conception 

in rabbits when applied vaginally before insemination, and was also found to inhibit 

HIV, Neisseria gonorrhoeae, and Chlamydia trachomatis (Crucitti et al., 2007, 

Anderson et al., 2002). Results from phase I clinical trials showed that CS was very 

safe and non-irritating to penile and vaginal application (Mauck et al., 2001, Mauck et 

al., 2001). CS vaginal gel (6%) was well tolerated as vaginal microbicide in both 

healthy and HIV-infected women and produced similar results in comparison to K-Y 

jelly, a commercially available product for contraceptive (El-Sadr et al., 2006, 

Malonza et al., 2005, Schwartz et al., 2006). 

Despite the initial success, CS failed the phase III clinical trial study in January 

2007 (Wakabi, 2007). It was found that after women stopped using CS gel, they were 

more prone to the HIV infection than those who were using placebo. Therefore, the 

study of 6% CS gel as anti-HIV and contraceptive agent was terminated as it was 

suspected to increase a woman's susceptibility to HIV infection (Conrad.org). 
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Herein, we report the synthesis and biological evaluation of bifunctional 

cellulose sulfate conjugates with nucleoside reverse transcriptase (RT) inhibitors, 3'­

azido-2',3'-dideoxythymidine (Zidovudine, AZT), 3'-fluoro-2',3'-dideoxythymidine 

(Alovudine, FLT,), and 2',3'-dideoxy-3'-thiacytidine (Lamivudine, 3TC). Two 

different linkers (acetate and succinate) were used to conjugate the nucleoside analogs 

with CS with different loading values. It was expected that the conjugates would be 

cleaved by hydrolytic activity of cellular esterase enzymes, resulting in two separate 

components as CS (HIV entry blocker) and nucleoside analogs (RTis). CS inhibits 

viral entry inside the cell and is active against X4 strain and cell-associated virus. On 

the other hand, nucleoside analogs are equally active against RS and X4 strains and 

inhibit the function of RT enzyme and HIV replication. In general, the conjugates 

were expected to provide synergistic and broad-spectrum anti-HIV activity against 

susceptible and multidrug-resistant strains of virus. Conjugates were also expected to 

exert contraceptive activity from the released CS. 

7.3. Materials and Methods 

7.3.1. Materials. 

All reagents including CS and cellulose phosphate, ether, dialysis membrane 

(3000 MW cut off) and solvents were purchased from Fisher Scientific. Size exclusion 

chromatography was carried out on a Hitachi analytical HPLC system on a analytical 

gel chromatography column (PolySep-GFC 3000, 300 mm x 7.8 mm; Phenomenex, 

Torrance, CA) to determine the loading of the nucleoside-linker-CS conjugates The 

mobile phase was comprised of potassium phosphate mono basic buffer (0.1 M, pH = 

267 



www.manaraa.com

7.4):acetonitrile (75:25, v/v) and was pumped at a flow rate of 1.0 mL/min. Cellulose 

sulfate derivatives were extracted by solvent precipitation method and precipitates 

were centrifuged by using Legend™ RT Refrigerated Tabletop Centrifuge. 

7.3.2. Chemistry 

Cellulose Sulfate Acetate (CSA, 7.2), Cellulose Acetate (CA, 7.14) and Dextran 

Acetate (DA, 7.15) The polymers, cellulose sulfate, cellulose, and dextran were 

converted to 2-acetyl substituted derivatives according to the previously reported 

procedure (Thomas et al., 1995). The polymer (1 g) and 2-bromoacetic acid (6 g, 43.5 

rnmol) were dissolved in water (25 mL). Sodium hydroxide (40%, 7.5 ml) was added 

to the reaction mixture and the mixture was stirred for 18 h at room temperature. The 

reaction mixture was concentrated at reduced pressure and dialyzed using a membrane 

(3000 M.Wt. cut off). The solution was further concentrated and dried under reduced 

pressure to afford 2-acetyl substituted polymers 7.2, 7.14, and 7.15. 

AZT-Cellulose Sulfate Acetate (AZT-CSA, 7.3) and FLT-Cellulose Sulfate 

Acetate (FLT-CSA, 7.4). Compound 7.2 (100 mg), nucleoside (AZT or FLT) (0.25 

rnmol), and dimethylaminopyridine (DMAP, 30 mg, 0.25 rnmol) were dissolved in 

dimethyl sulfoxide (DMSO) (3 mL). Diisopropylcarbodiimide (DIC, 30 µL, 0.2 

rnmol) was added to the solution. The reaction mixture was stirred at 40 °C for 24 h. 

The reaction mixture was cooled to room temperature. Cold diethyl ether:methanol 

(45 mL, 50:50 v/v) was added to the reaction mixture, and then the layer was washed 

twice first with cold methanol:diethyl ether ((50 mL, 50:50, v/v) and ether (50 mL), 
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cold methanol:diethyl ether ((50 mL, 50:50, v/v) and ether (50 mL), respectively. The 

mixture was centrifuged and the precipitate was dried under vacuum to afford 7.3 

(loading percentage= 1.78% ± 0.00) or 7.4 (loading percentage= 1.43% ± 0.06). 

3TC-Cellulose Sulfate Acetate (3TC-CSA, 7.5). 3TC-cellulose sulfate acetate was 

synthesized using (-)-N4-(4,4'-dimethoxytrityl)-2',3'-dideoxy-3'-thiacytidine (2.12) and 

CSA as starting materials. The synthesis of 2.12 was described above in Chapter 2. 

CSA (100 mg), 2.12 (130 mg, 0.25 mmol), and DMAP (30 mg, 0.25 mmol) were 

dissolved in DMSO (3 mL). DIC (30 µL, 0.2 mmol) was added to the solution. The 

reaction mixture was stirred at 40 °C for 24 h. Acetic acid (80%, 10 ml) was added to 

the reaction mixture and the mixture heated at 80 °C for 30 min. Acetic acid was 

evaporated under reduced pressure. To the residue was added cold diethyl 

ether:methanol (45 mL, 50:50 v/v). The mixture was washed twice with cold 

methanol:diethyl ether (50 mL, 50:50, v/v) and ether (50 mL), respectively, and 

centrifuged. The precipitate was dried under vacuum to give 7.5 (loading percentage 

1.07% ± 0.00). 

AZT-Succinate-Cellulose Sulfate (AZT-Succinate-CS, 7 .6). AZT-succinate (3.2) 

was synthesized as described in Chapter 3 from the reaction of AZT with succinic 

anhydride. Compound 3.2 (200 mg, 0.55 mmol), triphenylphosphine (TPP, 300 mg, 

1.15 mmol), and sodium cellulose sulfate (7.1, 100 mg) were dissolved in DMSO (3 

mL). DIAD (100 µI, 0.5 mmol) was added to the reaction mixture. The mixture was 

stirred at 40 °C for 24 h. Cold diethyl ether: methanol (45 mL, 50:50 v/v) was added to 

269 



www.manaraa.com

the reaction mixture. The mixture was washed twice with cold methanol:diethyl ether 

(50 ml, 50:50, v/v) and ether (50 mL), respectively, and was centrifuged. The 

precipitate was dried under vacuum to give AZT-succinate-cellulose sulfate (7.6, 

loading percentage= 18.48% ± 0.23). 

FLT-Succinate-Cellulose Sulfate (7.7). FLT-succinate (3.1) was synthesized as 

described in Chapter 3 from the reaction of FLT with succinic anhydride. Compound 

3.1 (200 mg, 0.58 mmol), DMAP (60 mg, 0.25 mmol) and sodium cellulose sulfate 

(7.1, 100 mg) were dissolved in DMSO (3 mL). DIC (50 µl, 0.32 mmol) was added to 

the reaction mixture. The mixture was stirred at 40 °C for 24 h. Cold diethyl 

ether:methanol (45 mL, 50:50 v/v) was added to the reaction mixture. The mixture 

was washed twice with cold methanol:diethyl ether (50 mL, 50:50, v/v) and ether (50 

mL), respectively, and was centrifuged. The precipitate was dried under vacuum to 

give FLT-succinate-cellulose sulfate (7.7, loading percentage= 7.87% ± 0.11). 

7.3.3. Purity and Loading Percentage Determination of Conjugates of Nucleoside 

Analogs with Cellulose Sulfate and Cellulose Sulfate Acetate. The percentage of 

purity and degree of substitution of the nucleoside analogs were determined using size 

exclusion chromatography (SEC). Initially, a method was developed and validated for 

parent nucleosides analogs, AZT, FLT and 3TC, dissolved in potassium phosphate 

monobasic (KH2P04) buffer (pH= 7.4) on a 30 cm x 7.8 mm gel chromatography 

column (PolySep-GFC 3000). Calibration curves of different concentrations (3, 6, 9, 

12 and 15 µg/ml) versus area under the curve (AUC) were plotted for each analog. 
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Similarly, the conjugates were passed through the column. The loading percentage 

was calculated from the calibration curve. The mobile phase consisted of 

buffer:acetonitrile (75:25, v/v) and was pumped at a flow rate of 1.0 mL/min. 

7.3.4. Anti-IDV Assays. Anti-HIV activities of the compounds were evaluated 

according to the previously reported procedure (Krebs et al., 1999). In summary, HeLa 

(Human cervical carcinoma: ATCC CCL-2.1) cell line was used to measure 

inactivation of both cell-free virus preparations and virus-infected cell preparations. 

Cells were plated in culture plates 24 hrs prior to each experiment. Cell-free viral 

preparations of HIV-I strains IIIB (lymphocytotropic strain) and BaL (monocytotropic 

strain) were used for cell-free assay. For cell-associated assay, SulTl cells were 

infected with IIIB virus 5 days prior to the experiment. Cell-free virus and virus­

infected cells were mixed with different compounds and diluted to make different 

concentrations. The mixture was further diluted with the buffer and added to the HeLa 

cells. The cells were incubated at 37°C for 48 hrs, stained for ~-galctosidease 

expression and compared with ~-galctosidease expression from the ~-gal-positive cells 

in absence of any microbicidal compound to get IC50 values. 

7.4. Results and discussion 

7.4.1. Chemistry 

The synthesis of cellulose sulfate acetate conjugates with AZT, FLT, and 

3TC was accomplished using building block synthesis strategy. For the synthesis 

of nucleoside-CSA conjugates, cellulose sulfate (7.1) was reacted first with 2-
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bromoacetic acid in presence of sodium hydroxide to afford cellulose sulfate 

acetate (CSA, 7.2). CSA was then reacted with AZT, FLT, or N4-DMTr-3TC to 

yield cellulose sulfate acetate conjugates of AZT (7.3, AZT-CSA, 1.78% loading), 

FLT (7.4, FLT-CSA, 1.43% loading), or N4-DMTr-3TC-CSA (7.5'), respectively. 

Deprotection of DMTr group in 7.5' afforded 3TC-CSA (7.5, 1.07% loading) 

(Scheme 7 .1 ). 

For the synthesis of sodium cellulose sulfate conjugates linked to AZT or FLT 

through a succinate linker, AZT and FLT were first reacted with succinic anhydride to 

synthesize AZT succinate and FLT succinate, which were then reacted with cellulose 

sulfate to afford cellulose sulfate succinate conjugates of AZT (7.6, 18.48% loading) 

and FLT (7.7, 7.87% loading) (Scheme 7.2). The Purity and percentage of loading of 

the nucleosides in the conjugates were determined using the SEC method as described 

above. 
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Br~ 
OH 

NaOH, Water 

AZT, FLT, or N4-DMTr-3TC 
DIC, DMP A, DMSO 

7.3 ROH=AZT 
7.4 ROH=FLT 

OH 

7.5' ROH=N4-DMTr-3TC 
tACOH (800/o) 

7.5 ROH=3TC 

Scheme 7.1. Synthesis of cellulose sulfate acetate conjugates of AZT, FLT and 3TC. 
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X = N3 AZT 
X = F FLT 

Succinic Anhydride 

Pyridine 

TPP, DIAD , DMSO for 
AZT derivative or · 

DIC, DIPEA, DMAP, DMSO 
for FLT derivative 

ylNH 
o ~ lNAo 

S0
3
Na ~OH N•O,S,~; 00 __L/0, ~~ 0. 0 

--~-o~3~a~c{ ' O OH O O O/ O 

OH HO OH X 

7.6 (Loading 18.48%) 
7.7 (Loading 7.87%) 

Scheme 7.2. Synthesis of AZT-succinate-CS (7.6) and FLT-succinate-CS (7.7) 

conjugates. 

7.4.2. Biological Activities 

7.4.2.1. Anti-HIV Activities Against Cell-Free and Cell-Associated Strains 

Table 7 .1 shows the antiviral activities of the cellulose sulfate-nucleoside 

conjugates with different loading percentages compared to those of CS, AZT, and 

FLT. CS exhibited approximately I 0-fold higher activity against X4 virus (IIIB strain, 

ECso = 5.9 µg/ml)) than R5 virus (BaL strain, ECso = 62.5 µg/ml) (Table 7.1). The 
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data is consistent with the reported data (Shattock et al., 2002, Meylan et al., 1994) 

that X4 strains possess higher number of positive charges on their V3 loop of gp120 

protein surface compared to those of R5 strains. Higher number of positive charges on 

V3 loop of X4 strains makes them more susceptible to interaction with anionic 

polymer CS. On the other hand, conjugation of CS with nucleosides in all conjugates 

made R5 strains susceptible more susceptible sometimes even more than X4 strains. 

Nucleoside-CSA conjugates (AZT-CSA, 7.3, 1.78%; FLT-CSA, 7.4, 1.43%) 

demonstrated higher anti-HIV activities than that of CS (7.1). Unlike AZT and FLT 

(EC5o > 100 µg/rnL), the conjugates 7.3 and 7.4 were consistently active against cell­

associated HIV (CTC assay) (EC5o = 5.6-5.8 µg/rnL). The improved anti-HIV 

activities of 7.3 and 7.4 compared to CS is possibly due to the release of two anti-HIV 

agents with different mechanisms of action and the presence of additional negatively­

charged acetate in the structure. Similarly, cellulose sulfate-acetate (7.2) exhibited 

significantly higher potency than CS (7.1) against cell-free virus. 

The higher anti-HIV activity of 7.3 (EC50 = 8.1 µg/rnL) and 7.4 (EC5o = 1.5 

µg/rnL) against R5 strains compared to that of CS (EC50 = 62.5 µg/ml) demonstrates 

the synergistic effect of CS conjugation with AZT or FLT. AZT and FLT are active 

against both R5 (BaL) and X4 (IIIB) strains of virus, but CS is more active against X4 

(IIIB) and cell-associated virus. 
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CSA (7.2) was tested for anti-HIV activity as a control, and surprisingly it 

showed slightly higher activity than 7.3 against cell-free virus and was almost equally 

active against X4 and RS strains. The better activity of 7.2 and its conjugates, 7.3 and 

7.4, can also be attributed to the presence of free negatively-charged carboxylate 

group of the acetate groups substituted on CS that enhance the negative charge density 

along with sulfate. The presence of additional negative charges on the polymer may 

have improved the HIV entry blocking properties of CS by interacting with positive 

charges of the viral protein. Although the substitution of acetate group on cellulose 

sulfate increased the anti-HIV activity of CS, but cellulose acetate (7.14) was 

completely inactive (Table 7.2), suggesting that the presence of sulfate of cellulose is 

critical in maintaining the anti-HIV activity of the polymer. 

3TC-CSA conjugate (7.5, 1.07% loading) showed significantly different anti­

HIV profile compared with AZT-CSA and FLT-CSA conjugates. Conjugate 7.5 

showed almost 37-fold less anti-HIV activity against X4 strain, and was not active 

against cell-associated virus. The poor anti-HIV activity of 3TC conjugate could be 

due to the interaction of free 4-arnino group of 3TC with the negatively charged 

groups on CSA that reduces the available free negative charge of the conjugate for 

binding to V3 loops of the virus. 

To determine the contribution of sulfate group in generating anti-HIV activity 

of CS, cellulose phosphate and dextran acetate were studied as controls. These 

compounds were found to be totally inactive in viral inhibition assay (Ta~le 7.2), 
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suggesting that negatively charged acetate and phosphate alone are not sufficient for 

efficient interactions with V3 loops of the virus. 

The anti-HIV activities of nucleoside-succinate-CS conjugates, AZT-

succinate-CS (7.6, 18.48%) and FLT-succinate-CS (7.7, 7.87%) were also evaluated. 

Both conjugates demonstrated at least 6-fold higher anti-HIV activity against X4 

strains than CS suggesting the contribution of nucleoside analog in anti-HIV activity 

(Table 7.1). However, 7.6 and 7.7 exhibited less anti-HIV activity against the cell 

associated virus (EC50 = 75-88 µg/mL) than that of CS (EC50 = 2.5 µg/mL). The 

conjugates also showed less anti-HIV activity against cell-free virus when compared 

with AZT and FLT. 

Table 7.1. Anti-HIV activities of nucleoside-cellulose sulfate conjugates. 

CTs• VBI(IllB)c VBI(BaL)a CTC" 
Compound 

Chemical Name EC(SO)b EC(SO) EC(SO) EC(SO) 
Code 

(µg/ml) (µg/ml) (µg/ml) (µg/ml) 

Sodium Cellulose Sulfate 
7.1 

(Mo!. wt. 2,000,900 Da) 
>100 5.9 62.5 2.5 

7.2 Cellulose Sulfate Acetate (CSA) >100 1.3 1.8 6.6 

AZT-Cellulose Sulfate Acetate 
> 100 2.5 8.1 5.6 7.3 

(AZT-CSA, 1.78% loading) 

FLT-Cellulose Sulfate Acetate 
>100 2.3 1.5 5.8 7.4 

(FLT-CSA, 1.43% loading) 

3TC-Cellulose Sulfate Acetate 
> 100 92.4 75 .l > JOO 7.5 

(3TC-CSA, 1.07% loading) 

AZT-Succinate-Cellulose Sulfate 
> 100 2.2 9.9 74.8 7.6 

(AZT-Sue-CS, 17.2% loading) 

FL T-Succinate-Cellulose Sulfate 
>100 6.2 6.1 87.6 7.7 

(FLT-Sue-CS, 7.87% loading) 

AZT Zidovudine >100 2.4 4.2 >100 

FLT Alovudine >100 <0.1 <0.1 >100 

3TC Lamivudine 100 7.5 2.6 18.4 

aCytotoxicity assay; b50% Effective concentration; 0Viral entry inhibition assay (lymphocytotropic 
strain); dViral entry inhibition assay (monocytotropic strain); °Cell- to- cell transmission assay (UIB). 
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Although 7.6 and 7.7 had 10 and 6 times higher loading values than the 

corresponding conjugates substituted with acetate (7.3 and 7.4), respectively, the 

cellulose sulfate succinate conjugates were generally less active than cellulose sulfate 

acetate conjugates (Table 7.1). The less anti-HIV activity of conjugates containing 

succinate linker, despite of their higher nucleoside loading, compared to those 

containing acetate linker could be due to incomplete hydrolysis of 7.6 and 7.7 to 

parent nucleosides or the hydrolysis of the conjugate to generate inactive nucleoside­

succinate derivatives instead of free nucleosides. Furthermore, upon hydrolysis of 

conjugates containing acetate linker, the acetate group will remain intact on the CS 

that contributes to overall negative charge of the anionic polymer. 

Table 7.2 shows the anti-HIV activities (in µg/mL) of the nucleoside-CS 

conjugates compared with the corresponding physical mixtures. The physical mixture 

of AZT ( 1. 78%) + CSA (7 .8) showed slightly better anti-HIV activity against cell free 

virus than the corresponding AZT-CSA conjugate (7.3). In comparison to 7.3, the anti­

HIV activity of 7.8 was almost 1.5- and 3.5-fold higher against lymphocytotropic and 

monocytotropic strains of cell-free virus, respectively, but was 1.5-fold less active 

against cell associated virus. 

When CSA was replaced with CS in the physical mixture with AZT in 7.11 

(17.2%), the anti-HIV activity was reduced significantly (2-9 fold) against cell-free 

virus when compared with the corresponding CSA conjugate 7.8 containing even a 

lower loading of AZT (l.78%), suggesting the major contribution of CSA in overall 
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activity. The physical mixture of AZT with CS (7.11, 17.2%) that was in a similar 

ratio to the AZT-succinate-CS conjugate (7.6), showed 2-7-fold less anti-HIV activity 

against cell-free virus when compared with AZT-CSA conjugate 7.3 (1.78%) and 

AZT-succinate-CS conjugate 7.6 (17.2%). 

Similar results were found in the case of FLT-CSA conjugate (7.9) and 3TC­

CSA (7.5) when compared with the corresponding physical mixtures, 7.4 and 7.10, 

respectively. Physical mixture of CSA and FLT (7.9, 1.43%) exhibited approximately 

3-5 fold higher anti-HIV activity against VBI (cell-free virus) when compared with the 

corresponding FLT-CSA conjugate (7.4, 1.43%). In the case of 7.10, the free amino 

group was not able to reduce the anionic interactions of sulfate group as described 

above in the conjugate 7.5. 

However, the overall anti-HIV activity of 7.9 was reduced by 8-22 times 

against cell-free virus when CSA in 7.9 (l.43%) was replaced with CS in 7.12 

(1.43%), suggesting the importance of CSA in overall anti-HIV activity. 

The anti-HIV activity in 7.12 was increased by 10-20 fold against cell-free 

virus when the FLT content was increased from 1.43% to 7.85% in 7.13. The data 

indicates that higher concentration of FLT in the physical mixture improves activity. 

The physical mixture of FLT with CS (7.13%) still exhibited 6-fold lower anti­

HIV activity against cell-associated virus when compared with FLT-CSA conjugate 
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(7.9, 1.43%). These data confirm that CSA is a more appropriate polymer for 

conjugation with nucleosides or making physical mixtures since all CSA derivatives 

exhibited better anti-HIV profile when compared with CS derivatives. 

The physical mixture of AZT + cellulose acetate (7.17, 1.78%) showed 

significantly less activity against cell-free virus when compared with AZT-CSA 

conjugate (7.3, 1.78%) and AZT + CSA (7.8, 1.78%) and was inactive against cell­

associated virus. Similarly, the physical mixture of FLT + cellulose acetate (7.18, 

1.43%) showed 9-21 fold less activity against cell-free virus when compared with FLT 

+ CSA (7.9, 1.43%) and was inactive against cell-associated virus. The result was not 

surprising since cellulose acetate is inactive polymer and the percentage of AZT or 

FLT were low in the physical mixture. 

In general, the conjugation of nucleosides with CS provided better anti-HIV 

profile against both X4 and RS strains of virus. The substitution of acetate group on 

CS improved the anti-HIV activity, possibly by creating new negative charges after 

hydrolysis or the presence of free acetate groups on the polymer. Succinate spacer was 

less optimal than the acetate group for linking of the nucleoside with CS. 
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Table 7.2. Anti-HIV activities of cellulose acetate, dextran acetate, cellulose 
phosphate, and physical mixtures of nucleosides with CS, CSA, and cellulose. 

Compound 
CTS" VBI(IIIB)c VBl(BaL)d CTc• 

Code 
Chemical Name EC(SO)b EC(SO) EC(SO) EC(SO) 

(µg/ml) (µg/ml) (µg/ml) (µg/ml) 

7.8 AZT (1.78 %) + CSA > JOO 1.7 2.5 8.0 

7.9 FLT (1.43 %) + CSA > 100 0.72 0.31 4.72 

7.10 3TC (1.07%) + CSA > 100 0.65 1.73 5.79 

7.11 AZT (17.2%) + CS >100 16.2 15.3 7.6 

7.12 FLT (1.43 %) + CS > 100 6.2 7.1 7.4 

7.13 FLT (7.85 %) + CS > 100 0.7 0.3 26.4 

7.14 Cellulose Acetate > 100 > 100 > 100 > 100 

7.15 Dextran Acetate > 100 > 100 > 100 > 100 

7.16 Cellulose Phosphate > 100 72.1 > 100 > 100 

7.17 
AZT (1.78%) +Cellulose 

>100 75.5 8.5 > 100 
Acetate 

7.18 
FLT (1.43%) + Cellulose 

> 100 6.8 6.5 > 100 
Acetate 

7.19 
3TC (1.07%) + Cellulose 

> 100 73 .9 22.4 > 100 
Acetate 

•cTS: Cytotoxicity assay; rEC(50) = 50% effective concentration; 8VBl(IIIB): Viral entry inhibition 
assay (lymphocytotropic strain); hVBI(BaL): Viral entry inhibition assay (monocytotropic strain); iCTC: 
cell- to- cell transmission assay (IIIB). 

7.4.2.2. Anti-HIV activities against Multi-Drug Resistant (MDR) Isolates 

AZT-CSA (7.3) and FLT-CSA (7.4) conjugates were evaluated for their anti-

HIV activities against MDR virus and the data were compared with the controls CS 

and dextran sulfate (Table 7.3). Both CS and dextran sulfate were active against MDR 
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virus (ICso = 1.61-3.12 µg/mL), but showed less activity against R5 strain of virus 

(ICso > 15 µg/mL). the result was expected since R5 virus has less positively charged 

V3 loops in gp 120 protein required for interactions with anionic polymers. 

On the other hand, AZT-CSA (7.3) showed almost similar anti-HIV activity 

against both R5 and MDR strains than CS. AZT-CSA (7.3) was more effective than 

CS, against the R5 HIV-1 lab-adapted strain BaL. The higher activity against R5 strain 

is a result of AZT attachment. Furthermore, AZT is not active against MDR strain and 

hence its conjugate with CS in AZT-CSA (7.3), is 2-fold less active than CS against 

MDR strain. Similarly FLT-CSA (7.4) showed significantly higher activity against R5 

strain versus CS (7.1) due to the presence of FLT in the conjugate. The anti-HIV 

activity of 7.4 against MDR is 5-fold higher than R5 strains, since released FLT has 

anti-HIV activity against AZT-MDR resistant. 

Table 7.3. Anti-HIV activities of AZT-CSA and FLT-CSA conjugates against R5 and 
rnultidrug resistant HIV-I clinical isolates. 

Compound Chemical Name Type of Virus I Cso (µg/mL) 

7.3 AZT-Cellulose Sulfate Acetate 
R5 3.52 

MDR 4.22 

7.4 FLT-Cellulose Sulfate Acetate 
R5 2.67 

MDR 0.50 

7.1 Cellulose sulfate 
R5 >20.0 

MDR 1.61 

Dextran Sulfate Dextran sulfate 
RS 15.7 

MDR 3.12 
Assay endpoint= p24 level (ELISA) 
IC50 = The minimum drug concentration that inhibits HIV-induced cytopathic effect by 50%, 
calculated by using a regression analysis program for semilog curve fitting 
HIV-1 clinical isolates: R5 = 92TH014; MDR = Multidrug resistant virus 7324-1 
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7.4.2.3. Contraceptive activity 

AZT-CSA conjugate (7.3) was selected for in vivo testing in rats for 

contraceptive activity. Application of CS and 7.3 in female rats prevented the 

pregnancy to 100% (Table 7.4). CS is known to have contraceptive properties and this 

result indicated that contraceptive property of the CS is retained after the AZT 

conjugation to the polymer. 

Table 7.4. Contraceptive efficacy of AZT-CSA conjugate. 

Concentration No. of Pregnant Pregnancy rate 
Group 

(mg/ml) females/total (%) 

TALP Control 414 100 

7.1 1 015 0 

7.3 1 015 0 

Female rabbits were inseminated with pooled rabbit semen containing 1 mg/mL of test compound 
or medium control (T ALP) 

7.5. Conclusions 

HIV entry blocker cellulose sulfate was conjugated with RT inhibitor 

nucleosides, AZT, FLT, and 3TC, through different linkers to synthesi.ze CS-

nucleoside conjugates as bifunctional anti-HIV agents targeting different events in 

HIV life cycle. The conjugates were evaluated for their anti-HIV activity against cell-

free, cell-associated and MDR virus. 

The conjugation of AZT or FLT with CS provided higher anti-HIV activity 

against RS strain of virus verses CS in all conjugates, suggesting the contribution of 

released nucleosides in generating broad-spectrum activities. 
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CS conjugates of AZT and FLT with acetate linker (AZT-CSA and FLT-CSA) 

and the physical mixture of AZT or FLT with CSA exhibited higher anti-HIV activity 

in cell-free virus when compared to their corresponding conjugates with succinate 

linker (AZT-succinate-CS and FLT-succinate-CS), the physical mixtures of CS+ AZT 

or FLT, and CS, possibly due to the creation of additional negative charges provided 

from carboxylic acid of acetate group on the polymer. Similarly, cellulose sulfate­

acetate exhibited significantly higher potency than CS against cell-free virus. Higher 

negative charge density may have contributed in stronger interactions of CS with 

positive charges present in V3 Loops of gp120 and thereby blocking HIV entry. 

Furthermore, AZT-CSA and FLT-CSA conjugates were more effective than 

CS against both X4 and RS HIV-1 viruses. The above-described conjugates present 

the advantage of not displaying weaker activity against HIV RS strains. Although in 

weight the AZT-CSA and AZT were similarly potent against cell-free virus, in moles 

(based on CS - 2 x 106 Daltons), the conjugate was 5 orders of magnitude more potent 

(from µM to subnanomolar). Furthermore, unlike AZT, the conjugate was consistently 

active against cell-associated HIV. 

This study presents an alternative approach for designing more optimal anti­

HIV agents that may have broad-spectrum anti-HIV activities against cell-free, cell­

associated and MDR virus by targeting both HIV entry and reverse transcription in 

HIV life cycle. 
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