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Abstract

2',3'-Dideoxynucleoside analogs are commonly used as anti-HIV, anti-HBV,
and anti-cancer drugs. Despite of their potent activities, there are some major limitations
in using 2',3'-dideoxynucleosides as therapeutic agents. The nucleosides have usually
poor cellular uptake because of their hydrophilic nature. Som? of the nucleoside
analogs, such as anti-HIV agents, become ineffective after multiple administrations
because of the development of the drug resistance, and therefore they must be
administered in combination therapy. It is hard to deliver the nucleoside analogs to a
particular tissue for site specific targeting. Furthermore, nucleoside analogs undergo
three intracellular phosphorylation steps to become active. The first phosphorylation

step is slow and a rate-limiting process for several compounds.

Herein, we report the ‘synthesis and evaluation of 2',3’-dideoxynucleoside
conjugates with fatty acids, peptides, other nucleosides, fatty acyl phosphotriesters, or
polymer derivatives. The primary hypothesis of this project was that conjugation of
nucleosides with other compounds offers a novel strategy in designing compounds with
enhanced anti-HIV activity. This combination may result in development of anti-HIV
agents having enhanced lipophilicity, longer duration of action by sustained
intracellular release of active substrates at adequate concentrations, higher uptake into

infected cells, and/or site specificity. The development of viral resistance to the

nucleosides would occur at a slower rate than to either compound alone. Furthermore,




In the first two chapters, synthesis and anti-HIV activities of fatty acyl
derivatives of Zidovudine (AZT), Allovudine (FLT), Emtricitabine (FTC), Lamivudine
(3TC), and Stavudine (d4T) are discussed. Among all the compounds, 5'-O-myristoyl
derivative of FTC (2.31, ECsy = 70 nM against cell-free virus) exhibited the best anti-
HIV profile when compared with other fatty acyl derivatives of other nucleosides and
the physical mixture of FTC and myristic acid. 5'-O-Fatty acyl defivatives of FLT, 5'-
0-(12-azidododecanoyl) derivative of FLT  (KP-1), and 5'-0-(12-
thioethyldodecanoyl)thymidine (KP-17), also displayed good activity against cell-free
(ECsp values of <0.2 to 0.4 uM, respectively) and cell-associated (ECso values of 0.9 to
1.0 uM, respectively) virus and minimal cellular toxicity. Cellular uptake studies for 5'-
O-fatty acyl derivatives of FLT and 3TC were conducted on CCRF-CEM cell line using
a 5(6)-carboxyfluorescein derivative attached through 12-aminododecanoic acid as a
linker to the nucleosides. The fluorescence-based studies indicated that the fatty acyl
derivatives of FLT and 3TC have a higher cellular uptake versus that of the
corresponding parent nucleoside substituted with a short alkyl group, such as 3-alanine.

The cellular uptake was concentration- and time-dependent.

In the third chapter, the synthesis and anti-HIV activities of succinate, suberate,
and peptide derivatives of AZT, FLT, and 3TC are discussed. The compounds were
designed in such a way to have 1 to 3 nucleosides. The hypothesis underlying this
project is that the conjugates are able to deliver 1 to 3 nucleoside analogs to the HIV-
infected cells. Some of the nucleoside-peptide conjugates were also substituted with the

atty acids and nucleosides exhibited higher anti-
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HIV activities when compared with those substituted only with nucleosides. Increasing
the number of anti-HIV nucleosides to 2 or 3 on the peptide chain enhanced the anti-
HIV potency. A glutamic acid ester derivative, FLT-Succinate-AZT(glutamyl)-3TC,
containing three different nucleosides was the most active compound among all the
derivatives with an ECsg value of 0.9 uM.

Chapter 4 describes the synthesis of FLT from thymidine using a solid-phase
method to circumvent some of the problems associated with the solution-phase

methods, such as multiple protecting and deprotecting steps.

Fifth chapter discusses the synthesis and anti-HIV activities of phosphotriesters
of AZT and FLT. The conjugates were expected to get hydrolyzed inside the cell, to
release nucleoside monophosphates, and to bypass first rate limiting phosphorylation
step. The synthesized phosphotriester derivatives showed only modest anti-HIV

activity, significantly lower than that of their parent nucleosides

In chapter 6, synthesis and characterization of dextran prodrug (3TCSD) of the
antiviral drug 3TC is discussed. Dextran-3TC conjugate was synthesized to localize
3TC selectively in the liver and provide sustained release of the drug by the action of

liver lysosomes. Liver accumulation of conjugated 3TC was enhanced by 50 fold when

compared to that of parent drug.
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In chapter 7 the synthesis and biological evaluation of double-barreled
conjugates of sodium cellulose sulfate (CS) with 2',3'-dideoxynucleosides analogs
(AZT, FLT and 3TC) using different linkers are described. Cellulose sulfate is a
polyanionic polymer which blocks HIV entry into the cells by interacting with the
positive charge of viral gp120 protein. Nucleosides analogs act as reverse transcriptase
inhibitors (RTIs). Conjugates were expected to undergo enzyrrzatic hydrolysis and
thereby releasing nucleosides and cellulose sulfate targeting two different strains of
virus. Cellulose sulfate conjugates of nucleosides containing an acetate linker showed
good activity against both RS and X4 strains of HIV. For example a CS-AZT conjugate
(acetate linker; 1.73% loading) was more effective than CS, especially against the RS
HIV-1 lab-adapted strain Bal. Similarly, sodium cellulose sulfate-acetate-FLT and
showed better anti-HIV profile than sodium cellulose sulfate and the mixture of sodium

cellulose sulfate and FLT.

Overall, the research described in this dissertation demonstrated that conjugation
of anti-HIV nucleoside analogs with appropriate compounds (e.g., fatty acids, polymers,
peptides groups, or other nucleosides) is an alternative strategy for designing more
effective anti-HIV agents that can be further developed as therapeutic or preventative

agents.
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Figure 6.9. Kidney concentration—time courses (top) and AUC values (bottom) of
parent (3TC) and/or conjugated (3TCSD) lamivudine after iv administration of single
5 mg/kg doses (3TC equivalent) of 3TC or 3TCSD to rats. Standard deviation values
are shown as error bars (» = 3 rats for each time point). Asterisk indicates significant
differences from the other two groups.
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Herein, we report the synthesis and biological evaluation of bifunctional
cellulose sulfate conjugates with nucleoside reverse transcriptase (RT) inhibitors, 3'-
azido-2',3'-dideoxythymidine (Zidovudine, AZT), 3'-fluoro-2',3'-dideoxythymidine
(Alovudine, FLT,), and 2'3'-dideoxy-3'-thiacytidine (Lamivudine, 3TC). Two
different linkers (acetate and succinate) were used to conjugate the nucleoside analogs
with CS with different loading values. It was expected that the conjugates would be
cleaved by hydrolytic activity of cellular esterase enzymes, resulting in two separate
components as CS (HIV entry blocker) and nucleoside analogs (RTIs). CS inhibits
viral entry inside the cell and is active against X4 strain and cell-associated virus. On
the other hand, nucleoside analogs are equally active against R5 and X4 strains and
inhibit the function of RT enzyme and HIV replication. In general, the conjugates
were expected to provide synergistic and broad-spectrum anti-HIV activity against
susceptible and multidrug-resistant strains of virus. Conjugates were also expected to

exert contraceptive activity from the released CS.

7.3. Materials and Methods
7.3.1. Materials.

All reagents including CS and cellulose phosphate, ether, dialysis membrane
(3000 MW cut off) and solvents were purchased from Fisher Scientific. Size exclusion
chromatography was carried out on a Hitachi analytical HPLC system on a analytical
gel chromatography column (PolySep-GFC 3000, 300 mm x 7.8 mm; Phenomenex,

Torrance, CA) to determine the loading of the nucleoside-linker-CS conjugates The

mprise potassium phosphate monobasic buffer (0.1 M, pH =

Ol LA Zyl_ﬂbl .
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7.4):acetonitrile (75:25, v/v) and was pumped at a flow rate of 1.0 mL/min. Cellulose
sulfate derivatives were extracted by solvent precipitation method and precipitates

were centrifuged by using Legend™ RT Refrigerated Tabletop Centrifuge.

7.3.2. Chemistry

Cellulose Sulfate Acetate (CSA, 7.2), Cellulose Acetate (CA, 7.14) and Dextran
Acetate (DA, 7.15) The polymers, cellulose sulfate, cellulose, and dextran were
converted to 2-acetyl substituted derivatives according to the previously reported
procedure (Thomas et al., 1995). The polymer (1 g) and 2-bromoacetic acid (6 g, 43.5
mmol) were dissolved in water (25 mL). Sodium hydroxide (40%, 7.5 ml) was added
to the reaction mixture and the mixture was stirred for 18 h at room temperature. The
reaction mixture was concentrated at reduced pressure and dialyzed using a membrane
(3000 M. Wt. cut off). The solution was further concentrated and dried under reduced

pressure to afford 2-acetyl substituted polymers 7.2, 7.14, and 7.15.

AZT-Cellulose Sulfate Acetate (AZT-CSA, 7.3) and FLT-Cellulose Sulfate
Acetate (FLT-CSA, 7.4). Compound 7.2 (100 mg), nucleoside (AZT or FLT) (0.25
mmol), and dimethylaminopyridine (DMAP, 30 mg, 0.25 mmol) were dissolved in
dimethyl sulfoxide (DMSO) (3 mL). Diisopropylcarbodiimide (DIC, 30 uL, 0.2
mmol) was added to the solution. The reaction mixture was stirred at 40 °C for 24 h.
The reaction mixture was cooled to room temperature. Cold diethyl ether:methanol
(45 mL, 50:50 v/v) was added to the reaction mixture, and then the layer was washed

twice first with cold methanol:diethyl ether ((50 mL, 50:50, v/v) and ether (50 mL),

268

www.manal



cold methanol:diethyl ether (50 mL, 50:50, v/v) and ether (50 mL), respectively. The
mixture was centrifuged and the precipitate was dried under vacuum to afford 7.3

(loading percentage = 1.78% =+ 0.00) or 7.4 (loading percentage = 1.43% + 0.06).

3TC-Cellulose Sulfate Acetate (3TC-CSA, 7.5). 3TC-cellulose sulfate acetate was
synthesized using (-)-Ns-(4,4'-dimethoxytrityl)-2',3'-dideoxy-3'-thiacytidine (2.12) and
CSA as starting materials. The synthesis of 2.12 was described above in Chapter 2.
CSA (100 mg), 2.12 (130 mg, 0.25 mmol), and DMAP (30 mg, 0.25 mmol) were
dissolved in DMSO (3 mL). DIC (30 pL, 0.2 mmol) was added to the solution. The
reaction mixture was stirred at 40 °C for 24 h. Acetic acid (80%, 10 ml) was added to
the reaction mixture and the mixture heated at 80 °C for 30 min. Acetic acid was
evaporated under reduced pressure. To the residue was added cold diethyl
ether:methanol (45 mL, 50:50 v/v). The mixture was washed twice with cold
methanol:diethyl ether (50 mL, 50:50, v/v) and ether (50 mL), respectively, and
centrifuged. The precipitate was dried under vacuum to give 7.5 (loading percentage

1.07% + 0.00).

AZT-Succinate-Cellulose Sulfate (AZT-Succinate-CS, 7.6). AZT-succinate (3.2)
was synthesized as described in Chapter 3 from the reaction of AZT with succinic
anhydride. Compound 3.2 (200 mg, 0.55 mmol), triphenylphosphine (TPP, 300 mg,
1.15 mmol), and sodium cellulose sulfate (7.1, 100 mg) were dissolved in DMSO (3
mL). DIAD (100 pl, 0.5 mmol) was added to the reaction mixture. The mixture was

er: methanol (45 mL, 50:50 v/v) was added to

Ol LaCN Zyl_ﬂbl
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the reaction mixture. The mixture was washed twice with cold methanol:diethyl ether
(50 ml, 50:50, v/v) and ether (50 mL), respectively, and was centrifuged. The
precipitate was dried under vacuum to give AZT-succinate-cellulose sulfate (7.6,

loading percentage= 18.48% + 0.23).

FLT-Succinate-Cellulose Sulfate (7.7). FLT-succinate (3.1) was synthesized as
described in Chapter 3 from the reaction of FLT with succinic anhydride. Compound
3.1 (200 mg, 0.58 mmol), DMAP (60 mg, 0.25 mmol) and sodium cellulose sulfate
(7.1, 100 mg) were dissolved in DMSO (3 mL). DIC (50 pl, 0.32 mmol) was added to
the reaction mixture. The mixture was stirred at 40 °C for 24 h. Cold diethyl
ether:methanol (45 mL, 50:50 v/v) was added to the reaction mixture. The mixture
was washed twice with cold methanol:diethyl ether (50 mL, 50:50, v/v) and ether (50
mL), respectively, and was centrifuged. The precipitate was dried under vacuum to

give FLT-succinate-cellulose sulfate (7.7, loading percentage = 7.87% + 0.11).

7.3.3. Purity and Loading Percentage Determination of Conjugates of Nucleoside
Analogs with Cellulose Sulfate and Cellulose Sulfate Acetate. The percentage of
purity and degree of substitution of the nucleoside analogs were determined using size
exclusion chromatography (SEC). Initially, a method was developed and validated for
parent nucleosides analogs, AZT, FLT and 3TC, dissolved in potassium phosphate
monobasic (KH,PO,) buffer (pH = 7.4) on a 30 cm x 7.8 mm gel chromatography
column (PolySep-GFC 3000). Calibration curves of different concentrations (3, 6, 9,

12 and 15 pg/mi) versus area under the curve (AUC) were plotted for each analog.
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Similarly, the conjugates were passed through the column. The loading percentage
was calculated from the calibration curve. The mobile phase consisted of

buffer:acetonitrile (75:25, v/v) and was pumped at a flow rate of 1.0 mL/min.

7.3.4. Anti-HIV Assays. Anti-HIV activities of the compounds were evaluated
according to the previously reported procedure (Krebs et al., 1999). In summary, HeLa
(Human cervical carcinoma: ATCC CCL-2.1) cell line was used to measure
inactivation of both cell-free virus preparations and virus-infected cell preparations.
Cells were plated in culture plates 24 hrs prior to each experiment. Cell-free viral
preparations of HIV-1 strains IIIB (lymphocytotropic strain) and BalL. (monocytotropic
strain) were used for cell-free assay. For cell-associated assay, SulT1 cells were
infected with IIIB virus 5 days prior to the experiment. Cell-free virus and virus-
infected cells were mixed with different compounds and diluted to make different
concentrations. The mixture was further diluted with the buffer and added to the HeLa
cells. The cells were incubated at 37°C for 48 hrs, stained for B-galctosidease
expression and compared with B-galctosidease expression from the B-gal-positive cells

in absence of any microbicidal compound to get ICsq values.

7.4. Results and discussion
7.4.1. Chemistry

The synthesis of cellulose sulfate acetate conjugates with AZT, FLT, and
3TC was accomplished using building block synthesis strategy. For the synthesis

of nucleoside-CSA conjugates, cellulose sulfate (7.1) was reacted first with 2-
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bromoacetic acid in presence of sodium hydroxide to afford cellulose sulfate
acetate (CSA, 7.2). CSA was then reacted with AZT, FLT, or N4-DMTr-3TC to
yield cellulose sulfate acetate conjugates of AZT (7.3, AZT-CSA, 1.78% loading),
FLT (7.4, FLT-CSA, 1.43% loading), or N4-DMTr-3TC-CSA (7.5'), respectively.
Deprotection of DMTr group in 7.5' afforded 3TC-CSA (7.5, 1.07% loading)

(Scheme 7.1).

For the synthesis of sodium cellulose sulfate conjugates linked to AZT or FLT
through a succinate linker, AZT and FLT were first reacted with succinic anhydride to
synthesize AZT succinate and FLT succinate, which were then reacted with cellulose
sulfate to afford cellulose sulfate succinate conjugates of AZT (7.6, 18.48% loading)
and FLT (7.7, 7.87% loading) (Scheme 7.2). The Purity and percentage of loading of

the nucleosides in the conjugates were determined using the SEC method as described

above.
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ACOH (80%)

7.5 ROH =3TC

Scheme 7.1. Synthesis of cellulose sulfate acetate conjugates of AZT, FLT and 3TC.
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Scheme 7.2. Synthesis of AZT-succinate-CS (7.6) and FLT-succinate-CS (7.7)

conjugates.

7.4.2. Biological Activities
7.4.2.1. Anti-HIV Activities Against Cell-Free and Cell-Associated Strains

Table 7.1 shows the antiviral activities of the cellulose sulfate-nucleoside
conjugates with different loading percentages compared to those of CS, AZT, and
FLT. CS exhibited approximately 10-fold higher activity against X4 virus (IIIB strain,

L strain, ECso = 62.5 pg/ml) (Table 7.1). The
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data is consistent with the reported data (Shattock et al., 2002, Meylan et al., 1994)
that X4 strains possess higher number of positive charges on their V3 loop of gp120
protein surface compared to those of R5 strains. Higher number of positive charges on
V3 loop of X4 strains makes them more susceptible to interaction with anionic
polymer CS. On the other hand, conjugation of CS with nucleosides in all conjugates

made RS strains susceptible more susceptible sometimes even more than X4 strains.

Nucleoside-CSA conjugates (AZT-CSA, 7.3, 1.78%; FLT-CSA, 7.4, 1.43%)
demonstrated higher anti-HIV activities than that of CS (7.1). Unlike AZT and FLT
(ECsp > 100 pg/mL), the conjugates 7.3 and 7.4 were consistently active against cell-
associated HIV (CTC assay) (ECsp = 5.6-5.8 pg/mL). The improved anti-HIV
activities of 7.3 and 7.4 compared to CS is possibly due to the release of two anti-HIV
agents with different mechanisms of action and the presence of additional negatively-
charged acetate in the structure. Similarly, cellulose sulfate-acetate (7.2) exhibited

significantly higher potency than CS (7.1) against cell-free virus.

The higher anti-HIV activity of 7.3 (ECso = 8.1 pg/mL) and 7.4 (ECsp = 1.5
pg/mL) against RS strains compared to that of CS (ECsp = 62.5 pg/ml) demonstrates
the synergistic effect of CS conjugation with AZT or FLT. AZT and FLT are active

against both R5 (BaL) and X4 (IIIB) strains of virus, but CS is more active against X4

(IIIB) and cell-associated virus.
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CSA (7.2) was tested for anti-HIV activity as a control, and surprisingly it
showed slightly higher activity than 7.3 against cell-free virus and was almost equally
active against X4 and RS strains. The better activity of 7.2 and its conjugates, 7.3 and
7.4, can also be attributed to the presence of free negatively-charged carboxylate
group of the acetate groups substituted on CS that enhance the negative charge density
along with sulfate. The presence of additional negative charges on the polymer may
have improved the HIV entry blocking properties of CS by interacting with positive
charges of the viral protein. Although the substitution of acetate group on cellulose
sulfate increased the anti-HIV activity of CS, but cellulose acetate (7.14) was
completely inactive (Table 7.2), suggesting that the presence of sulfate of cellulose is

critical in maintaining the anti-HIV activity of the polymer.

3TC-CSA conjugate (7.5, 1.07% loading) showed significantly different anti-
HIV profile compared with AZT-CSA and FLT-CSA conjugates. Conjugate 7.5
showed almost 37-fold less anti-HIV activity against X4 strain, and was not active
against cell-associated virus. The poor anti-HIV activity of 3TC conjugate could be
due to the interaction of free 4-amino group of 3TC with the negatively charged
groups on CSA that reduces the available free negative charge of the conjugate for

binding to V3 loops of the virus.

To determine the contribution of sulfate group in generating anti-HIV activity

of CS, cellulose phosphate and dextran acetate were studied as controls. These

compounds were found to be totally inactive in viral inhibition assay (Table 7.2),
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suggesting that negatively charged acetate and phosphate alone are not sufficient for
efficient interactions with V3 loops of the virus.

The anti-HIV activities of nucleoside-succinate-CS conjugates, AZT-
succinate-CS (7.6, 18.48%) and FLT-succinate-CS (7.7, 7.87%) were also evaluated.
Both conjugates demonstrated at least 6-fold higher anti-HIV activity against X4
strains than CS suggesting the contribution of nucleoside analog in anti-HIV activity
(Table 7.1). However, 7.6 and 7.7 exhibited less anti-HIV activity against the cell
associated virus (ECsq = 75-88 pg/mL) than that of CS (ECsyp = 2.5 pg/mL). The
conjugates also showed less anti-HIV activity against cell-free virus when compared
with AZT and FLT.

Table 7.1. Anti-HIV activities of nucleoside-cellulose sulfate conjugates.

CTS* VBI(IIIB)° VBI(BaL)° CTC*

Compound b
Cod Chemical Name EC(50) EC(50) EC(50) EC(50)
ode
(pg/ml)  (pg/mD  (pg/mb)  (pg/m)
Sodium Cellulose Sulfate
. >100 5. 62.5 2.5
71 (Mol. wt. 2,000,900 Da) ?
7.2 Cellulose Sulfate Acetate (CSA) >100 1.3 1.8 6.6
- 1 1fat
"3 AZT-Cellulose Sulfate Acetate ~100 25 8.1 56

(AZT-CSA, 1.78% loading)

FLT-Cellulose Sulfate Acetate
. >100 2.3 1.5 5.8
74 (FLT-CSA, 1.43% loading)

"5 3TC-Cellulose Sulfate Ac'etate 100 924 751 ~100
(3TC-CSA, 1.07% loading)

AZT-Succinate-Cellulose Sulfate
. . >100 2.2 9.9 74.8
7.6 (AZT-Suc-CS, 17.2% loading)

FLT-Succinate-Cellulose Sulfate

1 (FLT-Suc-CS, 7.87% loading) ~100 62 6.1 87.6
AZT Zidovudine >100 24 42 >100
FLT Alovudine >100 <0.1 <0.1 >100
3TC Lamivudine 100 7.5 2.6 18.4

aCytotoxicity assay; "50% Effective concentration; “Viral entry inhibition assay (lymphocytotropic

otropic strain); ‘Cell- to- cell transmission assay (II1IB).
- A d I
- 3
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Although 7.6 and 7.7 had 10 and 6 times higher loading values than the
corresponding conjugates substituted with acetate (7.3 and 7.4), respectively, the
cellulose sulfate succinate conjugates were generally less active than cellulose sulfate
acetate conjugates (Table 7.1). The less anti-HIV activity of conjugates containing
succinate linker, despite of their higher nucleoside loading, compared to those
containing acetate linker could be due to incomplete hydrolysis of 7.6 and 7.7 to
parent nucleosides or the hydrolysis of the conjugate to generate inactive nucleoside-
succinate derivatives instead of free nucleosides. Furthermore, upon hydrolysis of
conjugates containing acetate linker, the acetate group will remain intact on the CS

that contributes to overall negative charge of the anionic polymer.

Table 7.2 shows the anti-HIV activities (in pg/mL) of the nucleoside-CS
conjugates compared with the corresponding physical mixtures. The physical mixture
of AZT (1.78%) + CSA (7.8) showed slightly better anti-HIV activity against cell free
virus than the corresponding AZT-CSA conjugate (7.3). In comparison to 7.3, the anti-
HIV activity of 7.8 was almost 1.5- and 3.5-fold higher against lymphocytotropic and
monocytotropic strains of cell-free virus, respectively, but was 1.5-fold less active

against cell associated virus.

When CSA was replaced with CS in the physical mixture with AZT in 7.11
(17.2%), the anti-HIV activity was reduced significantly (2-9 fold) against cell-free
virus when compared with the corresponding CSA conjugate 7.8 containing even a

lower loading of AZT (1.78%), suggesting the major contribution of CSA in overall

I:-'bu-ﬂ‘}'u Zyl—$ I 278

www.man




activity. The physical mixture of AZT with CS (7.11, 17.2%) that was in a similar
ratio to the AZT-succinate-CS conjugate (7.6), showed 2-7-fold less anti-HIV activity
against cell-free virus when compared with AZT-CSA conjugate 7.3 (1.78%) and

AZT-succinate-CS conjugate 7.6 (17.2%).

Similar results were found in the case of FLT-CSA conjugate (7.9) and 3TC-
CSA (7.5) when compared with the corresponding physical mixtures, 7.4 and 7.10,
respectively. Physical mixture of CSA and FLT (7.9, 1.43%) exhibited approximately
3-5 fold higher anti-HIV activity against VBI (cell-free virus) when compared with the
corresponding FLT-CSA conjugate (7.4, 1.43%). In the case of 7.10, the free amino
group was not able to reduce the anionic interactions of sulfate group as described

above in the conjugate 7.5.

However, the overall anti-HIV activity of 7.9 was reduced by 8-22 times
against cell-free virus when CSA in 7.9 (1.43%) was replaced with CS in 7.12

(1.43%), suggesting the importance of CSA in overall anti-HIV activity.

The anti-HIV activity in 7.12 was increased by 10-20 fold against cell-free
virus when the FLT content was increased from 1.43% to 7.85% in 7.13. The data

indicates that higher concentration of FLT in the physical mixture improves activity.

The physical mixture of FLT with CS (7.13%) still exhibited 6-fold lower anti-

HIV activity against cell-associated virus when compared with FLT-CSA conjugate
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(7.9, 1.43%). These data confirm that CSA is a more appropriate polymer for
conjugation with nucleosides or making physical mixtures since all CSA derivatives

exhibited better anti-HIV profile when compared with CS derivatives.

The physical mixture of AZT + cellulose acetate (7.17, 1.78%) showed
significantly less activity against cell-free virus when compared with AZT-CSA
conjugate (7.3, 1.78%) and AZT + CSA (7.8, 1.78%) and was inactive against cell-
associated virus. Similarly, the physical mixture of FLT + cellulose acetate (7.18,
1.43%) showed 9-21 fold less activity against cell-free virus when compared with FLT
+ CSA (7.9, 1.43%) and was inactive against cell-associated virus. The result was not
surprising since cellulose acetate is inactive polymer and the percentage of AZT or

FLT were low in the physical mixture.

In general, the conjugation of nucleosides with CS provided better anti-HIV
profile against both X4 and RS strains of virus. The substitution of acetate group on
CS improved the anti-HIV activity, possibly by creating new negative charges after
hydrolysis or the presence of free acetate groups on the polymer. Succinate spacer was

less optimal than the acetate group for linking of the nucleoside with CS.
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Table 7.2. Anti-HIV activities of cellulose acetate, dextran acetate, cellulose
phosphate, and physical mixtures of nucleosides with CS, CSA, and cellulose.

CTS* VBI(IIIB)* VBI(BaL)* CTC*
C°2§3:"d Chemical Name EC(50)" EC(50) EC(50) EC(50)
(ng/ml) (ng/ml) (ng/ml) (hg/ml)
7.8 AZT (1.78 %) + CSA >100 1.7 2.5 8.0
7.9 FLT (1.43 %) + CSA >100 0.72 0.31 4.72
7.10 3TC (1.07%) + CSA >100 0.65 1.73 5.79
7.11 AZT (17.2%) + CS >100 16.2 15.3 7.6
7.12 FLT (1.43 %)+ CS >100 6.2 7.1 7.4
7.13 FLT (7.85 %) + CS >100 0.7 0.3 26.4
7.14 Cellulose Acetate >100 >100 >100 >100
7.15 Dextran Acetate >100 >100 >100 >100
7.16 Cellulose Phosphate >100 72.1 >100 >100
0,
7.17 AZT (1.78%) + Cellulose >100 75.5 8.5 >100
Acetate
0,
718 FLT (1.43%) + Cellulose ~100 6.8 6.5 >100
Acetate
0,
7.19 3TC (1.07%) + Cellulose >100 73.9 22.4 >100
Acetate

CTS: Cytotoxicity assay; 'EC(50) = 50% effective concentration; 8VBI(IIIB): Viral entry inhibition
assay (lymphocytotropic strain); "WBI(BaL): Viral entry inhibition assay (monocytotropic strain); ‘CTC:
cell- to- cell transmission assay (I1IB).
7.4.2.2. Anti-HIV activities against Multi-Drug Resistant (MDR) Isolates

AZT-CSA (7.3) and FLT-CSA (7.4) conjugates were evaluated for their anti-

HIV activities against MDR virus and the data were compared with the controls CS

S and dextran sulfate were active against MDR
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virus (ICso = 1.61-3.12 pg/mL), but showed less activity against R5 strain of virus
(ICso > 15 pg/mlL). the result was expected since R5 virus has less positively charged

V3 loops in gp120 protein required for interactions with anionic polymers.

On the other hand, AZT-CSA (7.3) showed almost similar anti-HIV activity
against both R5 and MDR strains than CS. AZT-CSA (7.3) was more effective than
CS, against the R5 HIV-1 lab-adapted strain BaL. The higher activity against R5 strain
is a result of AZT attachment. Furthermore, AZT is not active against MDR strain and
hence its conjugate with CS in AZT-CSA (7.3), is 2-fold less active than CS against
MDR strain. Similarly FLT-CSA (7.4) showed significantly higher activity against R5
strain versus CS (7.1) due to the presence of FLT in the conjugate. The anti-HIV
activity of 7.4 against MDR is 5-fold higher than RS strains, since released FLT has
anti-HIV activity against AZT-MDR resistant.

Table 7.3. Anti-HIV activities of AZT-CSA and FLT-CSA conjugates against R5 and
multidrug resistant HIV-1 clinical isolates.

Compound Chemical Name Type of Virus  ICsp (ug/mL)
7.3 AZT-Cellulose Sulfate Acetate MRD5R Z;g
7.4 FLT-Cellulose Sulfate Acetate MRSR 3;;7)
>
7.1 Cellulose sulfate MRD5R 12'2'10
Dextran Sulfate Dextran sulfate MIESR ;51;

Assay endpoint = p24 level (ELISA)
ICs, = The minimum drug concentration that inhibits HIV-induced cytopathic effect by 50%,
calculated by using a regression analysis program for semilog curve fitting

HIV-1 clinical isolates: R5 = 92TH014; MDR = Multidrug resistant virus 7324-1
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7.4.2.3. Contraceptive activity

AZT-CSA conjugate (7.3) was selected for in vivo testing in rats for
contraceptive activity. Application of CS and 7.3 in female rats prevented the
pregnancy to 100% (Table 7.4). CS is known to have contraceptive properties and this
result indicated that contraceptive property of the CS is retained after the AZT

conjugation to the polymer.

Table 7.4. Contraceptive efficacy of AZT-CSA conjugate.

Concentration No. of Pregnant Pregnancy rate
Group
(mg/ml) females/total (%)
TALP Control 4/4 100
7.1 1 0/5 0
7.3 1 0/5 0

Female rabbits were inseminated with pooled rabbit semen containing 1 mg/mL of test compound
or medium control (TALP)

7.5. Conclusions

HIV entry blocker cellulose sulfate was conjugated with RT inhibitor
nucleosides, AZT, FLT, and 3TC, through different linkers to synthesize CS-
nucleoside conjugates as bifunctional anti-HIV agents targeting different events in
HIV life cycle. The conjugates were evaluated for their anti-HIV activity against cell-

free, cell-associated and MDR virus.

The conjugation of AZT or FLT with CS provided higher anti-HIV activity

against RS strain of virus verses CS in all conjugates, suggesting the contribution of
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CS conjugates of AZT and FLT with acetate linker (AZT-CSA and FLT-CSA)
and the physical mixture of AZT or FLT with CSA exhibited higher anti-HIV activity
in cell-free virus when compared to their corresponding conjugates with succinate
linker (AZT-succinate-CS and FLT-succinate-CS), the physical mixtures of CS + AZT
or FLT, and CS, possibly due to the creation of additional negative charges provided
from carboxylic acid of acetate group on the polymer. Similarly, cellulose sulfate-
acetate exhibited significantly higher potency than CS against cell-free virus. Higher
negative charge density may have contributed in stronger interactions of CS with

positive charges present in V3 Loops of gp120 and thereby blocking HIV entry.

Furthermore, AZT-CSA and FLT-CSA conjugates were more effective than
CS against both X4 and RS HIV-1 viruses. The above-described conjugates present
the advantage of not displaying weaker activity against HIV RS strains. Although in
weight the AZT-CSA and AZT were similarly potent against cell-free virus, in moles
(based on CS ~ 2 x 10° Daltons), the conjugate was 5 orders of magnitude more potent
(from pM to subnanomolar). Furthermore, unlike AZT, the conjugate was consistently

active against cell-associated HIV.

This study presents an alternative approach for designing more optimal anti-
HIV agents that may have broad-spectrum anti-HIV activities against cell-free, cell-

associated and MDR virus by targeting both HIV entry and reverse transcription in

HIV life cycle.
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